2010 Annual Pretreatment Program Sludge Analysis (QUARTERLY SLUDGE PROJECT) ### SOUTH BAY WATER RECLAMATION PLANT Order No. 2006-067 NPDES Permit No.CA0109045 The Quarterly Sludge Project is part of the South Bay WRP NPDES (Permit No. CA0109045/Order No. 2006-067) monitoring requirements for the Metropolitan Sewerage System. The sampling plan is designed so as to provide a "snapshot" of all of the physical and chemical characteristics monitored of the wastewater treatment waste streams for a short interval of time (1-2 days). This is conducted quarterly. The Quarterly Sludge Project was conducted four times during 2010. Sampling occurred on February 2, May 4, August 3, and October 5. Monthly composite samples of MBC dewatered sludge (belt-press dewatered) during the respective calendar months were taken and analyzed for a similar suite of parameters. The tables showing the results of these analyses follow in this section. Results relative to the Pt. Loma WWTP or North City Water Reclamation Plant are in the respective annual reports for those facilities. ### Abbreviations: | SB_INF_02 | SBWRP influent | |-----------------|---------------------------------| | SB_OUTFALL_01 | SBWRP effluent | | SB_ITP_COMB_EFF | SBWRP & IWTP combined effluent | | SB_REC_WATER_34 | SBWRP reclaim water | | SB_PRIEFF_10 | Primary Effluent | | SB_SEC_EFF_29 | Secondary effluent | | SB_RSL_10 | Primary Sed Tank to Sludge Line | ^{*} pH, Grease & Oils, temperature, and conductivity are determined from grab samples. ### Annual 2010 | Source: Date: | | | INFLUENT
02-FEB-2010 | INFLUENT
04-MAY-2010 | INFLUENT
02-AUG-2010 | INFLUENT
05-OCT-2010 | |---|------------|--------------|-------------------------|-------------------------|-------------------------|-------------------------| | Date. | MDL | Units | 02 FEB 2010 | 04 MAI 2010 | 02 AUG 2010 | 03 001 2010 | | | | | | | | | | Aluminum | 47 | UG/L | 1300 | 618 | 380 | 1260 | | Antimony | 2.9 | UG/L | ND | ND | ND | ND | | Arsenic | . 4 | UG/L | 1.22 | 0.87 | ND | ND | | Barium | | UG/L | 97.8 | 63.4 | 76.8 | 77.8 | | Beryllium | | UG/L | ND | ND | ND | ND | | Boron | 7 | UG/L | 347 | 306 | 325 | 260 | | Cadmium | .53 | UG/L | ND | ND | ND | ND | | Chromium | 1.2 | UG/L | 3.5 | 1.5 | 2.2 | 3.0 | | Cobalt | .85 | UG/L | ND | ND | ND | ND | | Copper | 2 | UG/L | 73.4 | 31.7 | 57.1 | 63.8 | | Iron | 37 | UG/L | 623 | 255 | 282 | 602 | | Lead | 2 | UG/L | ND | ND | ND | ND | | Manganese | .24 | UG/L | 59.1 | 59.3 | 43.8 | 40.2 | | Mercury | .09 | UG/L | 0.309 | ND | ND | 0.069^ | | Molybdenum | .89 | UG/L | 5.6 | 5.5 | 5.4 | 4.6 | | Nickel | .53
.28 | UG/L
UG/L | 5.8 | 4.1 | 4.7 | 4.9 | | Selenium
Silver | .4 | UG/L
UG/L | 1.83 | 1.18
ND | 1.07
ND | ND
0.6 | | Thallium | 3.9 | UG/L
UG/L | ND | ND
ND | ND
ND | ND | | Vanadium | .64 | UG/L | 3.03 | 1.39 | 1.38 | 1.10 | | Zinc | 2.5 | UG/L | 153 | 62.5 | 82.6 | 143.0 | | | | | | | | 143.0 | | Calcium Hardness | .1 | MG/L | 202 | 171 | 189 | 166 | | Magnesium Hardness | . 4 | MG/L | 146 | 121 | 131 | 125 | | Total Hardness | . 4 | MG/L | 348 | 291 | 320 | 2.91 | | Total Alkalinity (bicarbonate) | | MG/L | 333 | 382 | 303 | 315 | | ======================================= | | | | | | | | Calcium | .04 | MG/L | 80.8 | 68.3 | 75.6 | 66.4 | | Lithium | .002 | MG/L | 0.037 | 0.029 | 0.041 | 0.032 | | Magnesium | .1 | MG/L | 35.5 | 29.3 | 31.9 | 30.4 | | Potassium | .3 | MG/L | 22.0 | 20.9 | 19.8 | 20.6 | | Sodium | 1 | MG/L | 218 | 178 | 178 | 191 | | Bromide | .1 | ====
MG/L | 0.41 | 0.60 | 0.34 | 0.18 | | Chloride | 7 | MG/L | 242 | 218 | 231 | 221 | | Fluoride | .05 | MG/L | 0.68 | 0.61 | 0.52 | 0.30 | | Nitrate | .04 | MG/L | 0.13 | 0.28 | 0.28 | 0.18 | | Ortho Phosphate | .2 | MG/L | 14.0 | 15.6 | 12.7 | 10.3 | | Sulfate | 9 | MG/L | 186 | 134 | 165 | 139 | | Cyanides, Total | .002 | MG/L | ND | ND | ND | ND | | BOD | 2 | MG/L | 406 | 429 | 348 | 384 | | На | | PH | 8.2 | 7.4 | 7.1 | 7.4 | | Settleable Solids | .1 | ML/L | 14.0 | 20.0 | 9.0* | 12.5 | | Turbidity | .13 | NTU | 134 | 191 | 124 | 152 | | Total Kjeldahl Nitrogen | 1.6 | MG/L | 50.2 | 58.6 | 54.3 | 47.5 | | Ammonia-N | .3 | MG/L | 32.7 | 47.0 | 30.8 | 30.9 | | Sulfides-Total | .18 | MG/L | 11.3 | 11.2 | 4.86 | 10.7 | | Total Suspended Solids | 1.4 | MG/L | 266 | 458 | 180 | 308 | | Volatile Suspended Solids | 1.6 | MG/L | 234 | 389 | 156 | 276 | | Total Dissolved Solids | 28 | MG/L | 1140 | 974 | 901 | 972 | | MBAS (Surfactants) | .03 | MG/L | 16.0 | 13.0 | 12.0 | 15.0 | | | | | | | | | [^] MDL= 0.005 ND= Not Detected ^{*} Sample date 03-AUG-2010 ### Annual 2010 | Source: | | | EFFLUENT | EFFLUENT | EFFLUENT | EFFLUENT | |---|----------|--------------|-------------|---|-------------|-------------| | Date: | | | 02-FEB-2010 | 04-MAY-2010 | 03-AUG-2010 | 05-0CT-2010 | | | MDL | Units | | | | | | ======================================= | ==== | ==== | ======== | ======== | ======== | ======== | | Aluminum | 47 | UG/L | 135 | 115 | 342 | 131 | | Antimony | 2.9 | UG/L | ND | ND | ND | ND | | Arsenic | .4 | UG/L | 0.79 | 0.79 | 0.56 | 0.49 | | Barium | .039 | UG/L | 68.3 | 52.1 | 48.1 | 46.6 | | Beryllium | .022 | UG/L | ND | ND | ND | ND | | Boron | 7 | UG/L | 361 | 369 | 334 | 194 | | Cadmium | .53 | UG/L | ND | ND | ND | ND | | Chromium | 1.2 | UG/L | <1.2 | 2.1 | ND | 1.5 | | Cobalt | .85 | UG/L | ND | ND | ND | ND | | Copper | 2 | UG/L | 11.4 | 12.5 | 12.3 | 13.8 | | Iron | 37 | UG/L | 103 | 95 | <37 | 95 | | Lead | 2 | UG/L | ND | ND | ND | ND | | Manganese | .24 | UG/L | 40.1 | 29.7 | 23.4 | 25.1 | | Mercury | .09 | UG/L | ND | ND | ND | 0.007 | | Molybdenum | .89 | UG/L | 3.3 | 6.4 | 3.0 | 3.0 | | Nickel | .53 | UG/L | 10.1 | 5.2 | 4.6 | 3.9 | | Selenium | .28 | UG/L | 0.85 | 0.63 | 0.64 | 0.53 | | Silver | .4 | UG/L | ND | ND | ND | ND | | Thallium | 3.9 | UG/L | ND | ND | ND | ND | | Vanadium | .64 | UG/L | 1.31 | 1.12 | 1.17 | <0.64 | | Zinc | 2.5 | UG/L | 29.8 | 31.5 | 30.7 | 30.0 | | ======================================= | ==== | ==== | ======== | ======== | ======== | ======== | | Calcium Hardness | .1 | MG/L | 210 | 183 | 183 | 172 | | Magnesium Hardness | .4 | MG/L | 150 | 126 | 123 | 124 | | Total Hardness | .4 | MG/L | 360 | 308 | 305 | 296 | | Total Alkalinity (bicarbonate) | | MG/L | 177 | 159 | 155 | 156 | | | | | | ======================================= | ========= | ========= | | Calcium | .04 | MG/L | 84.0 | 73.1 | 73.1 | 68.8 | | Lithium
 | | MG/L | 0.038 | 0.028 | 0.041 | 0.031 | | Magnesium | .1 | MG/L | 36.4 | 30.5 | 29.8 | 30.1 | | Potassium | .3 | MG/L | 19.8 | 19.8 | 21.4 | 19.2 | | Sodium | 1 | MG/L | 219 | 201 | 182 | 192 | | Promido | | | 0.45 | 0.52 | 0.26 | 0.26 | | Bromide
Chloride | .1
7 | MG/L | 0.45 | 0.53 | 0.36 | 0.26
233 | | Fluoride | ,
.05 | MG/L
MG/L | 251
0.71 | 251
0.67 | 229
0.59 | 0.53 | | Nitrate | .03 | MG/L
MG/L | 25.5 | 28.7 | 26.2 | 25.2 | | Ortho Phosphate | .2 | MG/L | 4.7 | 9.0 | 10.4 | 4.3 | | Sulfate | 9 | MG/L | 224 | 181 | 210 | 188 | | Cyanides, Total | | MG/L | ND | ND | ND | ND | | BOD | 2 | MG/L | 13.8 | 9.8 | 8.0 | 6.9 | | pH | 2 | PH | 7.3 | 7.5 | 7.2 | 7.5 | | Settleable Solids | .1 | ML/L | ND | ND | ND | ND | | Turbidity | .13 | NTU | 1.9 | 3.1 | 2.4 | 2.0 | | Total Kjeldahl Nitrogen | 1.6 | MG/L | 4.7 | 2.3 | 2.4 | 3.5 | | Chlorine Residual, Total | .03 | MG/L | 0.06 | 0.12 | 0.12 | 0.07 | | Ammonia-N | .3 | MG/L | 1.7 | ND | ND | ND | | Sulfides-Total | .18 | MG/L | ND | <0.18 | ND | ND | | Total Suspended Solids | 1.4 | MG/L | 5.1 | 4.1 | 6.7 | 5.1 | | Volatile Suspended Solids | 1.6 | MG/L | 4.4 | 3.3 | 4.0 | 4.0 | | Total Dissolved Solids | 28 | MG/L | 1060 | 939 | NR | 861 | | MBAS (Surfactants) | .03 | MG/L | 0.19 | 0.19 | 0.16 | 0.17 | | (30 0000) | | , _ | 0.17 | 0.15 | 0.10 | J. 17 | ND= Not Detected NR= Not Required ### Annual 2010 | Source: | | | COMB EFF | COMB EFF | COMB EFF | COMB EFF | |---|------------|--------------|-------------|-------------|--------------|-------------| | Date: | | | 02-FEB-2010 | 04-MAY-2010 | 03-AUG-2010 | 05-0CT-2010 | | | | Units | | | | | | Aluminum | 47 | UG/L | 302 | 225 | 212 | 245 | | Antimony | 2.9 | UG/L | ND | ND | ND | ND. | | Arsenic | .4 | UG/L | 1.83 | 1.77 | 2.46 | 2.46 | | Barium | | UG/L | 45.5 | 30.2 | 22.8 | 26.3 | | Beryllium | | UG/L | ND | ND | ND | ND | | Boron | 7 | UG/L | 396 | 381 | 442 | 326 | | Cadmium | .53 | UG/L | ND | ND | ND | ND | | Chromium | 1.2 | UG/L | 8.8 | 3.8 | 2.5 | 2.4 | | Cobalt | .85 | UG/L | 0.9 | 0.9 | 1.1 | 1.0 | | Copper | 2 | UG/L | 33.8 | 30.1 | 31.8 | 42.7 | | Iron | 37 | UG/L | 1890 | 2360 | 1820 | 2180 | | Lead | 2 | UG/L | ND | 4.8 | 2.4 | 2.7 | | Manganese | .24 | UG/L | 66.1 | 70.4 | 81.2 | 79.8 | | Mercury | .09 | UG/L | ND | ND | ND | 0.017 | | Molybdenum | .89 | UG/L | 6.9 | 9.0 | 8.9 | 10.8 | | Nickel | .53 | UG/L | 26.5 | 12.3 | 12.2 | 25.6 | | Selenium | .28 | UG/L | 1.62 | 1.80 | 1.96 | 3.34 | | Silver | .4 | UG/L | 0.8 | ND | ND | ND | | Thallium | 3.9 | UG/L | ND | ND | ND | ND | | Vanadium | .64 | UG/L | 2.67 | 2.81 | 2.85 | 2.51 | | Zinc | 2.5 | UG/L | 65.0 | 50.1 | 47.4 | 45.5 | | ======================================= | ==== | ==== | | | | ======== | | Calcium Hardness | .1 | MG/L | 232 | 192 | 195 | 206 | | Magnesium Hardness | .4 | MG/L | 159 | 127 | 146 | 155 | | Total Hardness | .4 | MG/L | 391 | 319 | 341 | 361 | | Total Alkalinity (bicarbonate) | 20 | MG/L | 306 | 306 | 318 | 336 | | | ==== | ==== | ======== | ======== | ======== | ======== | | Calcium | .04 | MG/L | 92.8 | 76.8 | 77.9 | 82.7 | | Lithium | .002 | MG/L | 0.061 | 0.042 | 0.047 | 0.053 | | Magnesium | .1 | MG/L | 38.7 | 30.8 | 35.6 | 37.7 | | Potassium | .3 | MG/L | 23.2 | 23.1 | 24.7 | 24.2 | | Sodium | 1 | MG/L | 265 | 236 | 269 | 277 | | | .1 | ====
MG/L | 0.25 | 0.26 | 0.49 | 0.25 | | Bromide
Chloride |
. 1
7 | | 0.35
298 | 0.36
272 | 0.48
351 | 0.35
348 | | Fluoride | ,
.05 | MG/L
MG/L | 0.67 | 0.68 | 0.76 | 0.29 | | Nitrate | .03 | MG/L
MG/L | 0.11 | 2.43 | 0.76 | 0.29 | | Ortho Phosphate | .04 | MG/L
MG/L | 7.0 | 10.0 | 11.1 | 13.4 | | Sulfate | 9 | MG/L | 343 | 246 | 259 | 274 | | | | MG/L | 0.002 | 0.003 | 0.005 | 0.036 | | Cyanides,Total
BOD | 2 | MG/L | 124 | 179 | 105 | 137 | | pH | 2 | PH | 7.8 | 7.4 | 7.5 | 7.3 | | Settleable Solids | .1 | ML/L | ND | 0.5 | 0.8 | 3.5 | | | | | 37.9 | 39.9 | | 38.8 | | Turbidity
Total Kjeldahl Nitrogen | .13
1.6 | NTU
MG/L | 45.3 | 52.2 | 48.0
48.3 | 49.9 | | Chlorine Residual, Total | .03 | MG/L | 45.5
ND | ND | 46.3
ND | 49.9
ND | | Ammonia-N | .3 | MG/L | 32.3 | 39.1 | 34.7 | 41.1 | | Sulfides-Total | .18 | MG/L | ND | 0.89 | ND | 0.24 | | Total Suspended Solids | 1.4 | MG/L | 54.0 | 70.0 | 66.0 | 124.0 | | Volatile Suspended Solids | 1.6 | MG/L
MG/L | 50.0 | 48.0 | 50.0 | 119.0 | | Total Dissolved Solids | 28 | MG/L
MG/L | 1330 | 1100 | 1160 | 1230 | | MBAS (Surfactants) | .03 | MG/L
MG/L | 13.0 | 17.0 | 13.0 | 13.0 | | TIDAS (Sui raccailes) | . 05 | ilio/ L | 15.0 | 17.0 | 15.0 | 15.0 | ND= Not Detected NR= Not Required #### Annual 2010 | Source: | | | PRI EFF | PRI EFF | PRI EFF | PRI EFF | |---|------|--------|-------------|-------------|-------------|-------------| | Date: | MDI | 11-24- | 02-FEB-2010 | 04-MAY-2010 | 02-AUG-2010 | 05-0CT-2010 | | | | Units | ======== | ======== | ======== | ======== | | Aluminum | 47 | UG/L | 626 | 748 | 394 | 525 | | Antimony | 2.9 | UG/L | ND | ND | ND | ND | | Arsenic | .4 | UG/L | 1.04 | 0.96 | 0.49 | 0.58 | | Barium | .039 | UG/L | 82.1 | 65.9 | 69.0 | 62.8 | | Beryllium | .022 | UG/L | ND | ND | ND | ND | | Boron | 7 | UG/L | 340 | 230 | 317 | 104 | | Cadmium | .53 | UG/L | ND | ND | ND | ND | | Chromium | 1.2 | UG/L | 10.3 | 2.9 | 2.5 | 2.5 | | Cobalt | .85 | UG/L | ND | ND | ND | ND | | Copper | 2 | UG/L | 45.2 | 43.6 | 49.5 | 40.0 | | Iron | 37 | UG/L | 438 | 468 | 239 | 300 | | Lead | 2 | UG/L | ND | 2.1 | ND | ND | | Manganese | .24 | UG/L | 55.0 | 56.1 | 37.2 | 37.1 | | Mercury | .09 | UG/L | ND | ND | ND | 0.019 | | Molybdenum | .89 | UG/L | 5.0 | 8.7 | 4.8 | 4.7 | | Nickel | .53 | UG/L | 12.5 | 5.2 | 4.1 | 5.0 | | Selenium | .28 | UG/L | 1.43 | 1.27 | 1.20 | 0.99 | | Silver | .4 | UG/L | 0.8 | 6.0 | ND | 0.7 | | Thallium | 3.9 | UG/L | ND | ND | ND | ND | | Vanadium | .64 | UG/L | 1.38 | 1.46 | 1.40 | 1.02 | | Zinc | 2.5 | UG/L | 76.5 | 96.5 | 71.5 | 81.2 | | ======================================= | | • | ========= | ======== | ========= | ======== | | Calcium Hardness | .1 | MG/L | 207 | 173 | 182 | 171 | | Magnesium Hardness | .4 | MG/L | 153 | 121 | 124 | 128 | | Total Hardness | .4 | MG/L | 360 | 294 | 306 | 299 | | Total Alkalinity (bicarbonate) | | MG/L | 326 | 311 | 344 | 295 | | ======================================= | | ==== | | | | ========= | | Calcium | .04 | MG/L | 82.8 | 69.1 | 72.9 | 68.4 | | Lithium | .002 | MG/L | 0.037 | 0.029 | 0.041 | 0.032 | | Magnesium | .1 | MG/L | 37.1 | 29.5 | 30.1 | 31.1 | | Potassium | .3 | MG/L | 21.8 | 21.6 | 20.8 | 20.5 | | Sodium | 1 | MG/L | 224 | 210 | 184 | 194 | | Bromide | .1 | MG/L | 0.44 | 0.46 | 0.30 | 0.17 | | Chloride | 7 | MG/L | 262 | 247 | 234 | 237 | | Fluoride | .05 | MG/L | 0.71 | 0.69 | 0.54 | 0.34 | | Nitrate | .04 | MG/L | 0.18 | 0.31 | 0.14 | 0.05 | | Ortho Phosphate | .2 | MG/L | 11.0 | 11.5 | 13.9 | 13.6 | | Sulfate | 9 | MG/L | 209 | 148 | 169 | 161 | | Cyanides, Total | - | MG/L | ND | ND | ND | ND | | BOD | 2 | MG/L | 208 | 276 | 174 | 197 | | pH | _ | PH | 7.6 | 7.7 | 7.0* | 7.5 | | Settleable Solids | .1 | ML/L | 0.5 | 0.8 | 1.1* | 1.0 | | Turbidity | .13 | NTU | 121 | 116 | 57.6 | 88.4 | | Total Kjeldahl Nitrogen | 1.6 | MG/L | 45.4 | 45.2 | 53.4 | 54.4 | | Ammonia-N | .3 | MG/L | 28.3 | 26.0 | 43.9 | 35.5 | | Sulfides-Total | .18 | MG/L | 1.80 | 5.12 | ND | 2.14 | | Total Suspended Solids | 1.4 | MG/L | 118 | 82.0 | 98.0 | 90.0 | | Volatile Suspended Solids | 1.6 | MG/L | 102 | 68.0 | 82.0 | 62.5 | | Total Dissolved Solids | 28 | MG/L | 1070 | 958 | 942 | 956 | | MBAS (Surfactants) | .03 | MG/L | 4.00 | 6.10 | 10.0 | 6.80 | | (541 140041105) | | / L | 7.00 | 0.10 | 10.0 | 0.00 | ^{*} Sample date 03-AUG-2010 ND= Not Detected NR= Not Required #### Annual 2010 | Samaaa | | | CEC EEE | CEC EEE | 656 555 | 656 555 | |---|------------|--------------|------------------------|------------------------|------------------------|------------------------| | Source:
Date: | | | SEC_EFF
02-FEB-2010 | SEC_EFF
04-MAY-2010 | SEC_EFF
02-AUG-2010 | SEC_EFF
05-0CT-2010 | | Date. | MDI | Units | 02-FEB-2010 | 04-MAT-2010 | 02-AUG-2010 | 03-0C1-2010 | | ======================================= | | | ======== | ======== | ======== | ======== | | Aluminum | 47 | UG/L | 138 | 116 | 121 | 136 | | Antimony | 2.9 | UG/L | ND | ND | ND | ND | | Arsenic | .4 | UG/L | 0.79 | 0.66 | 0.42 | 0.58 | | Barium | .039 | UG/L | 66.7 | 50.7 | 54.2 | 47.4 | | Beryllium | .022 | UG/L | ND | ND | ND | ND | | Boron | 7 | UG/L | 369 | 362 | 347 | 110 | | Cadmium | .53 | UG/L | ND | ND | ND | ND | | Chromium | 1.2 | UG/L | ND | ND | 1.5 | 2.0 | | Cobalt | .85 | UG/L | ND | ND | ND | ND | | Copper | 2 | UG/L | 13.4 | 6.9 | 17.9 | 11.4 | | Iron | 37 | UG/L | 87 | 93 | 42 | 61 | | Lead | 2 | UG/L | ND | ND | ND | ND | | Manganese | .24 | UG/L | 32.4 | 34.0 | 19.3 | 23.1 | | Mercury | .09 | UG/L | ND | ND | ND | 0.007 | | Molybdenum | .89 | UG/L | 3.4 | 5.6 | 3.7 | 3.1 | | Nickel | .53 | UG/L | 10.7 | 3.8 | 3.2 | 5.2 | | Selenium | .28 | UG/L | 0.80 | 0.64 | 0.84 | 0.63 | | Silver | .4 | UG/L | ND | ND | ND | ND | | Thallium | 3.9
.64 | UG/L | ND
0.05 | ND | ND | ND
ND | | Vanadium
Zinc | 2.5 | UG/L
UG/L | 0.95
30.2 | 1.12
36.2 | 1.28
33.1 | 27.1 | | 21110 | | | 50.2 | 30.2 | 55.1 | 27.1 | | Calcium Hardness | .1 | MG/L | 202 | 183 | 176 | 174 | | Magnesium Hardness | .4 | MG/L | 146 | 126 | 121 | 125 | | Total Hardness | .4 | MG/L | 348 | 309 | 297 | 298 | | Total Alkalinity (bicarbonate) | | MG/L | 166 | 160 | 154 | 156 | | | | ==== | ======== | ======== | ======== | ======== | | Calcium | .04 | MG/L | 80.7 | 73.2 | 70.6 | 69.5 | | Lithium | .002 | MG/L | 0.036 | 0.030 | 0.041 | 0.032 | | Magnesium | .1 | MG/L | 35.5 | 30.6 | 29.4 | 30.2 | | Potassium | .3 | MG/L | 18.8 | 19.8 | 19.9 | 19.3 | | Sodium | 1 | MG/L | 213 | 202 | 180 | 193 | | | | | ======== | ======== | ======== | ======== | | Bromide | .1 | MG/L | 0.45 | 0.49 | 0.34 | 0.32 | | Chloride | 7 | MG/L | 249 | 251 | 217 | 236 | | Fluoride | .05 | MG/L | 0.73 | 0.61 | 0.63 | 0.62 | | Nitrate | .04 | MG/L | 27.20 | 27.60 | 23.90 | 24.60 | | Ortho Phosphate | .2 | MG/L | 3.6 | 9.8 | 12.1 | 4.4 | | Sulfate | 9 | MG/L | 227 | 182
ND | 202
0.002 | 190 | | Cyanides,Total
BOD | 2 | MG/L | 0.002
14.7 | | 9.6 | ND
12.9 | | | 2 | MG/L
PH | 7.3 | 6.6
7.4 | 7.2* | 7.3 | | pH
Settleable Solids | .1 | ML/L | ND | V.4
ND | 7.2*
ND* | 7.3
ND | | Turbidity | .13 | NTU | 2.3 | 2.1 | 4.8 | 2.2 | | Total Kjeldahl Nitrogen | 1.6 | MG/L | 3.5 | 2.2 | 3.2 | 3.4 | | Ammonia-N | .3 | MG/L | 0.6 | ND | ND | ND | | Sulfides-Total | .18 | MG/L | ND | ND | ND | ND | | Total Suspended Solids | 1.4 | MG/L | 7.3 | 4.3 | 15.5 | 5.9 | | Volatile Suspended Solids | 1.6 | MG/L | 6.2 | 3.3 | 13.5 | 4.8 | | Total Dissolved Solids | 28 | MG/L | 971 | 907 | 924 | 912 | | MBAS (Surfactants) | .03 | MG/L | 0.22 | 0.20 | 0.22 | 0.13 | | , | | • | | | | | ^{*} Sample date 03-AUG-2010 ND= Not Detected NR= Not Required #### Annual 2010 | Source:
Date: | | | RAW SLUDGE
02-FEB-2010 | RAW SLUDGE
04-MAY-2010 | RAW SLUDGE
03-AUG-2010 | RAW SLUDGE
05-OCT-2010 | |--|-----------------|--------------|---------------------------|---------------------------|---------------------------|---------------------------| | | | Units | | | | | | Aluminum | ====
47 | UG/L | 33200 | 52100 | 38700 | 4500 | | Antimony | 2.9 | UG/L | 7.3 | 8.0 | 17.1 | ND | | Arsenic | .4 | UG/L | 11.6 | 2.05 | 1.57 | 16.0 | | Barium | .039 | UG/L | 942 | 1110 | 1270 | 236 | | Beryllium | | UG/L | 0.66 | 0.37 | 1.02 | 0.05 | | Boron | 7 | UG/L | 349 | 406 | 406 | 128 | | Cadmium | .53 | UG/L | 4.4 | 4.8 | 5.8 | ND | | Chromium | 1.2 | UG/L | 87.7 | 107 | 121 | 14.9 | | Cobalt | .85 | UG/L | 7.8 | 9.0 | 11.4 | 2.9 | | Copper | 2 | UG/L | 1440 | 1660 | 2270 | 404 | | Iron | 37 | UG/L | 21400 | 22700 | 28700 | 41800 | | Lead | 2 | UG/L | 73.0 | 81.8 | 157 | 6.8 | | Manganese | .24 | UG/L | 518 | 670 | 560 | 317 | | Mercury | .09 | UG/L | 2.82 | 4.30 | 2.52 | 7.60 | | Molybdenum | .89 | UG/L | 56.5 | 216.0 | 91.9 | 18.0 | | Nickel | .53 | UG/L | 94.9 | 95.6 | 113.0 | 26.4 | | Selenium | .28 | UG/L | ND | 2.55 | 2.46 | 0.99 | | Silver | .4 | UG/L | 20.6 | 25.6 | 25.6 | 3.8 | | Thallium | 3.9 | UG/L | 7.7 | 6.3 | ND | ND | | Vanadium | .64 | UG/L | 52.2 | 69.3 | 50.8 | 5.08 | | Zinc | 2.5 | UG/L | 3390 | 4500 | 4210 | 373 | | Total Alkalinity (bicarbonate) | 20 | MG/L | 815 | 737 | 863 | 848 | | Calcium | .04 | ====
MG/L | 96.9 | 104.0 | 98.8 | 81.8 | | Lithium | | MG/L | 0.040 | 0.031 | 0.045 | 0.038 | | Magnesium | .1 | MG/L | 41.5 | 40.4 | 38.5 | 39.1 | | Potassium | .3 | MG/L | 36.7 | 36.7 | 36.0 | 32.5 | | Sodium | 1 | MG/L | 210 | 208 | 188 | 200 | | ====================================== | .1 | ====
MG/L | 0.40 | 0.58 | ND | 0.21 | | Chloride | . <u>1</u>
7 | MG/L
MG/L | 260 | 264 | ND
234 | 231 | | Fluoride | .05 | MG/L | 0.41 | 0.73 | 0.72 | 0.59 | | Nitrate | .04 | MG/L | 0.14 | 0.43 | 0.27 | 0.14 | | Ortho Phosphate | .2 | MG/L | 102 | 52.8 | 62.0 | 75.1 | | Sulfate | 9 | MG/L | 77 | 66 | 72 | 57 | | Cyanides, Total | _ | MG/L | 0.004 | 0.002 | 0.003 | ND | | Total Kjeldahl Nitrogen | 1.6 | MG/L | 347 | 430 | 1850 | 437 | |
Sulfides-Total | .18 | MG/L | 57.0 | 58.1 | 58.6 | 36.5 | ND= Not Detected NA= Not Analyzed NS= Not Sampled #### Annual 2010 | Source: | | | REC_WATER | REC_WATER | REC_WATER | REC_WATER | |---|----------|--------------|-------------|-------------|-------------|-------------| | Date: | | | 02-FEB-2010 | 04-MAY-2010 | 02-AUG-2010 | 05-0CT-2010 | | | | Units | | | | | | Aluminum | 47 | UG/L | 126 | 103 | 321 | 144 | | Antimony | 2.9 | UG/L | ND | ND | ND | ND | | Arsenic | .4 | UG/L | 0.89 | 0.74 | 0.63 | <0.40 | | Barium | | UG/L | 67.8 | 52.4 | 47.4 | 49.4 | | Beryllium | | UG/L | ND | 32.4
ND | 47.4
ND | 49.4
ND | | Boron | 7 | UG/L | 359 | 361 | 361 | 117 | | Cadmium | ,
.53 | | ND | ND | | | | Chromium | 1.2 | UG/L
UG/L | ND
ND | 3.7 | ND
<1.2 | ND
<1.2 | | | | | | S.7
ND | VI.2 | | | Cobalt | .85 | UG/L | ND | | | ND | | Copper | 2 | UG/L | 11.8 | 13.9 | 12.0 | 11.5 | | Iron | 37 | UG/L | 94 | 120 | <37 | 73 | | Lead | 2 | UG/L | ND | ND | ND | ND | | Manganese | .24 | UG/L | 30.5 | 32.8 | 16.6 | 18.2 | | Mercury | .09 | UG/L | ND | ND | ND | 0.006 | | Molybdenum | .89 | UG/L | 3.2 | 6.4 | 3.2 | 3.2 | | Nickel | .53 | UG/L | 10.0 | 6.9 | 4.5 | 4.3 | | Selenium | .28 | UG/L | 0.82 | 0.68 | 0.67 | 0.44 | | Silver | .4 | UG/L | ND | ND | ND | ND | | Thallium | 3.9 | UG/L | ND | ND | ND | ND | | Vanadium | .64 | UG/L | 1.36 | <0.64 | 1.08 | ND | | Zinc | 2.5 | UG/L | 29.0 | 29.1 | 31.9 | 27.8 | | Calcium Hardness | .1 | MG/L | 204 | 183 | 177 | 174 | | Magnesium Hardness | .4 | MG/L | 139 | 125 | 121 | 125 | | Total Hardness | .4 | MG/L | 343 | 308 | 298 | 299 | | Total Alkalinity (bicarbonate) | | MG/L | 187 | 160 | 141 | 163 | | ====================================== | | ==== | ========= | 100 | | ======== | | Calcium | .04 | MG/L | 81.6 | 73.4 | 71.0 | 69.5 | | Lithium | | MG/L | 0.037 | 0.030 | 0.042 | 0.034 | | Magnesium | .1 | MG/L | 33.8 | 30.4 | 29.3 | 30.3 | | Potassium | .3 | MG/L | 18.5 | 19.6 | 19.5 | 19.5 | | Sodium | 1 | MG/L | 199 | 200 | 180 | 198 | | ======================================= | | • | ======== | ======== | ======== | ======== | | Bromide | .1 | MG/L | 0.35 | 0.45 | 0.31 | 0.24 | | Chloride | 7 | MG/L | 254 | 253 | 219 | 242 | | Fluoride | .05 | MG/L | 0.62 | 0.49 | 0.47 | 0.47 | | Nitrate | .04 | MG/L | 26.1 | 31.1 | 29.1 | 29.2 | | Ortho Phosphate | .2 | MG/L | 4.1 | 8.3 | 7.2 | 4.8 | | Sulfate | 9 | MG/L | 233 | 186 | 217 | 194 | | Cyanides, Total | - | MG/L | 0.002 | 0.002 | 0.003 | 0.004 | | BOD | 2 | MG/L | ND | ND | 2.5 | 2.8 | | pH | 2 | PH | 7.5 | 7.5 | 7.2* | 7.5 | | Turbidity | .13 | NTU | 0.9 | 0.8 | 1.4 | 0.9 | | Total Kjeldahl Nitrogen | 1.6 | MG/L | 3.5 | 1.8 | 2.0 | 2.2 | | Ammonia-N | .3 | MG/L | 2.4 | ND | 0.9 | ND | | Sulfides-Total | .18 | MG/L | ND | ND
ND | ND | ND
ND | | Total Suspended Solids | 1.4 | MG/L
MG/L | 1.5 | ND
ND | 3.0 | ND
ND | | Volatile Suspended Solids | 1.6 | | ND | ND
ND | 1.8 | ND
ND | | • | | MG/L | | | | | | Total Dissolved Solids | 28 | MG/L | 1060 | 920 | 930 | 912 | | MBAS (Surfactants) | .03 | MG/L | 0.21 | 0.20 | 0.17 | 0.11 | ^{*} Sample Date 03-AUG-2010 ND= Not Detected NR= Not Required ### SOUTH BAY WATER RECLAMATION PLANT Ammonia-Nitrogen and Total Cyanides ### Annual 2010 ### Total Cyanide, MDL=0.002 mg/L | | INFLUENT | EFFLUENT | COMB EFF | PRI EFF | SEC EFF | RSL | |-------------|----------|----------|----------|---------|---------|----------| | ======== | ======== | | | | | ======== | | 02-FEB-2010 | ND | ND | 0.002 | ND | 0.002 | 0.004 | | 04-MAY-2010 | ND | ND | 0.003 | ND | ND | 0.002 | | 02-AUG-2010 | ND | NR | NR | ND | 0.002 | NR | | 03-AUG-2010 | NR | ND | 0.005 | NR | NR | 0.003 | | 05-0CT-2010 | ND | ND | 0.036 | ND | ND | ND | | ======== | ======== | | | | | ======== | | AVERAGE | ND | ND | 0.012 | ND | 0.001 | 0.002 | ### Ammonia as Nitrogen, MDL=0.3 mg/L | | INFLUENT | EFFLUENT | COMB EFF | PRI EFF | SEC EFF | |-------------|----------|----------|----------|----------|----------| | | | | | | | | 02-FEB-2010 | 32.7 | 1.74 | 32.3 | 28.3 | 0.6 | | 04-MAY-2010 | 47.0 | ND | 39.1 | 26.0 | ND | | 02-AUG-2010 | 30.8 | NR | NR | 43.9 | ND | | 03-AUG-2010 | NR | ND | 34.7 | NR | NR | | 05-OCT-2010 | 30.9 | ND | 41.1 | 35.5 | ND | | | ======== | ======== | ======== | ======== | ======== | | AVERAGE | 35.4 | 0.44 | 36.8 | 33.4 | 0.15 | ND= Not Detected NR= Not Required NS= Not Sampled ### SOUTH BAY WATER RECLAMATION PLANT Radioactivity ### Annual 2010 ### Analyzed by: Test America Laboratories | Source | | | | Gross Alpha Radiation | Gross Beta Radiation | |-----------|-------------|-----------|-----|--|--| | | 02-FEB-2010 | | | 3.3 ± 2.2 | 23.0 ± 4.7 | | | 04-MAY-2010 | | | 1.0 ± 2.0 | 22.4 ± 5.5 | | INFLUENT | 02-AUG-2010 | P525067 | | 4.3 ± 2.0 | 23.9 ± 5.2 | | | 05-OCT-2010 | | | 4.1 ± 2.8 | 22.1 ± 6.4 | | | | | === | | | | INFLUENT | ANNUAL | AVERAGE | | 3.2 ± 2.3 | 22.9 ± 5.5 | | Source | | | | Gross Alpha Radiation | Gross Beta Radiation | | | 02-FEB-2010 | | | 2.1 ± 2.2 | 22.0 ± 4.5 | | EFFLUENT | 04-MAY-2010 | P515506 | | 2.0 ± 2.6 | 21.9 ± 6.2 | | EFFLUENT | 03-AUG-2010 | P525072 | | 1.9 ± 1.5 | 25.5 ± 4.8 | | | 05-OCT-2010 | | | 2.9 ± 2.8 | 28.3 ± 7.9 | | EFFLUENT | | | === | 2.2 ± 2.3 | 24.4 ± 5.9 | | Source | | | | Gross Alpha Radiation | Gross Beta Radiation | | | 02-FEB-2010 | | | 2.6 ± 3.3 | 25.4 ± 5.6 | | | 04-MAY-2010 | D515511 | | 2.6 ± 3.3
-0.9 ± 2.0 | 23.4 ± 3.6
24.6 ± 6.4 | | COMB EFF | | P525077 | | 3.6 ± 1.9 | 19.9 ± 5.6 | | COMB EFF | | | | 3.2 ± 2.9 | 25.6 ± 7.0 | | | | | === | | | | COMB EFF | ANNUAL | AVERAGE | | 2.1 ± 2.5 | 23.9 ± 6.2 | | Source | | | | Gross Alpha Radiation | Gross Beta Radiation | | PRI EFF | 02-FEB-2010 | | === | 2.4 ± 2.5 | 25.3 ± 4.7 | | PRI EFF | 04-MAY-2010 | | | 0.8 ± 1.8 | 26.8 ± 6.5 | | PRI EFF | 02-AUG-2010 | | | 3.4 ± 1.6 | 22.6 ± 4.7 | | PRI EFF | 05-0CT-2010 | | | 3.2 ± 3.0 | 21.6 ± 6.7 | | PRI EFF | ANNUAL | | === | 2.5 ± 2.2 | 24.1 ± 5.7 | | Source | Sample Date | Sample ID | | Gross Alpha Radiation | Gross Beta Radiation | | | | | | ====================================== | ====================================== | | SEC EFF | 02-FEB-2010 | | | 2.2 ± 2.0 | 21.1 ± 4.6 | | SEC EFF | 04-MAY-2010 | P515521 | | 2.6 ± 2.5 | 16.4 ± 5.1 | | SEC EFF | 02-AUG-2010 | P525087 | | 2.1 ± 1.4 | 20.4 ± 4.2 | | SEC EFF | 05-OCT-2010 | | | 1.0 ± 2.4 | 20.0 ± 6.9 | | | | | | 2.0 ± 2.1 | 1.95 ± 5.2 | | Source | | | | Gross Alpha Radiation | Gross Beta Radiation | | | | | === | | | | | 02-FEB-2010 | | | 3.5 ± 1.9 | 17.6 ± 4.3 | | | 04-MAY-2010 | | | -0.3 ± 2.2 | 17.5 ± 6.4 | | | 02-AUG-2010 | | | 1.6 ± 1.1 | 20.2 ± 4.2 | | | 05-0CT-2010 | | | 2.6 ± 3.0 | 22.0 ± 7.3 | | | | | === | 1 0 + 2 1 | | | REC WATER | ANNUAL | AVERAGE | | 1.9 ± 2.1 | 19.3 ± 5.6 | Units in picocuries/liter (pCi/L) #### Annual 2010 | | | | INFLUENT | INFLUENT
04-MAY-2010 | INFLUENT | INFLUENT | |----------------------------|------|-------|----------|-------------------------|----------|----------| | Analyte | MDL | Units | P504507 | P515501 | P525067 | P533616 | | Aldrin | 7 | NG/L | ND | ND | ND | ND | | BHC, Alpha isomer | 7 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Beta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Delta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Gamma isomer | 5 | NG/L | ND
ND | ND
ND | ND
ND | 10 | | Alpha (cis) Chlordane | 3 | NG/L | ND. | ND
ND | ND. | ND | | Gamma (trans) Chlordane | 4 | NG/L | ND. | ND
ND | ND. | ND | | Alpha Chlordene | • | NG/L | NA
NA | NA | NA
NA | NA
NA | | Gamma Chlordene | | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Cis Nonachlor | 3 | NG/L | ND. | ND. | ND. | ND | | Dieldrin | 3 | NG/L | ND | ND | ND | ND | | Endosulfan Sulfate | 6 | NG/L | ND | ND | ND. | ND | | Alpha Endosulfan | 4 | NG/L | ND | ND. | ND. | ND | | Beta Endosulfan | 2 | NG/L | ND | ND | ND | ND | | Endrin | 2 | NG/L | ND | ND | ND | ND | | Endrin aldehyde | 9 | NG/L | ND | ND | ND | ND | | Heptachlor | 8 | NG/L | ND | ND | ND | ND | | Heptachlor epoxide | 4 | NG/L | ND | ND | ND | ND | | Methoxychlor | 10 | NG/L | ND | ND | ND | ND | | Mirex | 10 | NG/L | ND | ND | ND | ND | | o,p-DDD | 4 | NG/L | ND | ND | ND | ND | | o,p-DDE | 5 | NG/L | ND | ND | ND | ND | | o,p-DDT | 3 | NG/L | ND | ND | ND | ND | | 0xychlordane | 6 | NG/L | ND | ND | ND | ND | | PCB 1016 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1221 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1232 | 360 | NG/L | ND | ND | ND | ND | | PCB 1242 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1248 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1254 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1260 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1262 | 930 | NG/L | ND | ND | ND | ND | | p,p-DDD | 3 | NG/L | ND | ND | ND | ND | | p,p-DDE | 4 | NG/L | ND | ND | ND | ND | | p,p-DDT | 8 | NG/L | ND | ND | ND | ND | | Toxaphene | 330 | NG/L | ND | ND | ND | ND | | Trans Nonachlor | 5 | NG/L | ND | ND | ND | ND | | Aldrin + Dieldrin | 7 | NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes | 7 | NG/L | 0 | 0 | 0 | 10 | | DDT and derivatives | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | 6 | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | 4000 | NG/L | 0 | 0 | 0 | 0 | | Endosulfans | 6 | NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 0 | 0 | 0 | 0 | | | | ===== | ======== | ======== | ======== | ======== | | Chlorinated Hydrocarbons | 4000 | NG/L | 0 | 0 | 0 | 10 | ND=not detected NA=not analyzed #### Annual 2010 | | | | EFFLUENT | EFFLUENT
04-MAY-2010 | EFFLUENT | EFFLUENT | |----------------------------|------|-------|----------|-------------------------|----------|----------| | Analyte | MDL | Units | P504512 | P515506 | P525072 | P533621 | | Aldrin | 7 | NG/L | ND | ND | ND | ND | | BHC, Alpha isomer | 7 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC,
Beta isomer | 3 | NG/L | ND
ND | ND
ND | ND | ND
ND | | BHC, Delta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Gamma isomer | 5 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Alpha (cis) Chlordane | 3 | NG/L | ND. | ND
ND | ND. | ND | | Gamma (trans) Chlordane | 4 | NG/L | ND. | ND
ND | ND
ND | ND | | Alpha Chlordene | • | NG/L | NA
NA | NA | NA
NA | NA
NA | | Gamma Chlordene | | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Cis Nonachlor | 3 | NG/L | ND. | ND. | ND. | ND | | Dieldrin | 3 | NG/L | ND | ND | ND | ND | | Endosulfan Sulfate | 6 | NG/L | ND | ND | ND | ND | | Alpha Endosulfan | 4 | NG/L | ND. | ND | ND. | ND | | Beta Endosulfan | 2 | NG/L | ND | ND | ND. | ND | | Endrin | 2 | NG/L | ND | ND | ND | ND | | Endrin aldehyde | 9 | NG/L | ND | ND | ND. | ND | | Heptachlor | 8 | NG/L | ND | ND | ND | ND | | Heptachlor epoxide | 4 | NG/L | ND | ND | ND | ND | | Methoxychlor | 10 | NG/L | ND | ND | ND | ND | | Mirex | 10 | NG/L | ND | ND | ND | ND | | o,p-DDD | 4 | NG/L | ND | ND | ND | ND | | o,p-DDE | 5 | NG/L | ND | ND | ND | ND | | o,p-DDT | 3 | NG/L | ND | ND | ND | ND | | 0xychlordane | 6 | NG/L | ND | ND | ND | ND | | PCB 1016 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1221 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1232 | 360 | NG/L | ND | ND | ND | ND | | PCB 1242 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1248 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1254 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1260 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1262 | 930 | NG/L | ND | ND | ND | ND | | p,p-DDD | 3 | NG/L | ND | ND | ND | ND | | p,p-DDE | 4 | NG/L | ND | ND | ND | ND | | p,p-DDT | 8 | NG/L | ND | ND | ND | ND | | Toxaphene | 330 | NG/L | ND | ND | ND | ND | | Trans Nonachlor | 5 | NG/L | ND | ND | ND | ND | | Aldrin + Dieldrin | 7 | NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes | 7 | NG/L | 0 | 0 | 0 | 0 | | DDT and derivatives | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | | NG/L | 0 | 0 | 0 | 0 | | Endosulfans | 6 | NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 0 | 0 | 0 | 0 | | | | ===== | ======== | | | ======== | | Chlorinated Hydrocarbons | 4000 | NG/L | 0 | 0 | 0 | 0 | ND=not detected NA=not analyzed #### Annual 2010 | | | | COMB EFF | COMB EFF | COMB EFF | COMB EFF | |--|--------|--------------|----------|------------------------|----------|----------| | Analyte | MDL | Units | P504517 | 04-MAY-2010
P515511 | P525077 | P533626 | | A1 do 2 o | ==== | ===== | | ========= | | ======== | | Aldrin | 7
7 | NG/L | ND | ND | ND | ND
ND | | BHC, Alpha isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Beta isomer | 3 | NG/L | | | | ND
ND | | BHC, Delta isomer
BHC, Gamma isomer | 5 | NG/L
NG/L | ND
ND | ND
ND | ND
ND | ND
6 | | Alpha (cis) Chlordane | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND | | Gamma (trans) Chlordane | 4 | NG/L
NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Alpha Chlordene | 4 | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Gamma Chlordene | | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Cis Nonachlor | 3 | NG/L | ND ND | ND. | ND ND | ND
ND | | Dieldrin | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Endosulfan Sulfate | 6 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Alpha Endosulfan | 4 | NG/L | ND
ND | ND
ND | ND | ND
ND | | Beta Endosulfan | 2 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Endrin | 2 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Endrin aldehyde | 9 | NG/L | ND. | ND
ND | ND
ND | ND | | Heptachlor | 8 | NG/L | ND. | ND
ND | ND
ND | ND | | Heptachlor epoxide | 4 | NG/L | ND | ND | ND | ND | | Methoxychlor | 10 | NG/L | ND | ND | ND | ND | | Mirex | 10 | NG/L | ND | ND | ND | ND | | o,p-DDD | 4 | NG/L | ND | ND | ND | ND | | o,p-DDE | 5 | NG/L | ND | ND | ND. | ND | | o,p-DDT | 3 | NG/L | ND | ND | ND | ND | | Oxychlordane | 6 | NG/L | ND | ND | ND | ND | | PCB 1016 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1221 | | NG/L | ND | ND | ND | ND | | PCB 1232 | 360 | NG/L | ND | ND | ND | ND | | PCB 1242 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1248 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1254 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1260 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1262 | 930 | NG/L | ND | ND | ND | ND | | p,p-DDD | 3 | NG/L | ND | ND | ND | ND | | p,p-DDE | 4 | NG/L | ND | ND | ND | ND | | p,p-DDT | 8 | NG/L | ND | ND | ND | ND | | Toxaphene | 330 | NG/L | ND | ND | ND | ND | | Trans Nonachlor | 5 | NG/L | ND | ND | ND | ND | | Aldrin + Dieldrin | 7 | NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes | 7 | NG/L | 0 | 0 | 0 | 6 | | DDT and derivatives | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | | NG/L | 0 | 0 | 0 | 0 | | Endosulfans | 6 | NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlorinated Hydrocanhons | | ===== | | | | | | Chlorinated Hydrocarbons | 4000 | NG/L | 0 | 0 | 0 | 6 | ND=not detected NA=not analyzed #### Annual 2010 | | | | PRI EFF | PRI EFF | PRI EFF | PRI EFF | |----------------------------|------|-------|---------|-------------|----------|---------| | | | | | 04-MAY-2010 | | | | Analyte | MDL | Units | P504522 | P515516 | P525082 | P533631 | | 114.j. | | ===== | | | ======== | | | Aldrin | 7 | NG/L | ND | ND | ND | ND | | BHC, Alpha isomer | 7 | NG/L | ND | ND | ND | ND | | BHC, Beta isomer | 3 | NG/L | ND | ND | ND | ND | | BHC, Delta isomer | 3 | NG/L | ND | ND | ND | ND | | BHC, Gamma isomer | 5 | NG/L | ND | ND | ND | 6 | | Alpha (cis) Chlordane | 3 | NG/L | ND | ND | ND | ND | | Gamma (trans) Chlordane | 4 | NG/L | ND | ND | ND | ND | | Alpha Chlordene | | NG/L | NA | NA | NA | NA | | Gamma Chlordene | _ | NG/L | NA | NA | NA | NA | | Cis Nonachlor | 3 | NG/L | ND | ND | ND | ND | | Dieldrin | 3 | NG/L | ND | ND | ND | ND | | Endosulfan Sulfate | 6 | NG/L | ND | ND | ND | ND | | Alpha Endosulfan | 4 | NG/L | ND | ND | ND | ND | | Beta Endosulfan | 2 | NG/L | ND | ND | ND | ND | | Endrin | 2 | NG/L | ND | ND | ND | ND | | Endrin aldehyde | 9 | NG/L | ND | ND | ND | ND | | Heptachlor | 8 | NG/L | ND | ND | ND | ND | | Heptachlor epoxide | 4 | NG/L | ND | ND | ND | ND | | Methoxychlor
 | 10 | NG/L | ND | ND | ND | ND | | Mirex | 10 | NG/L | ND | ND | ND | ND | | o,p-DDD | 4 | NG/L | ND | ND | ND | ND | | o,p-DDE | 5 | NG/L | ND | ND | ND | ND | | o,p-DDT | 3 | NG/L | ND | ND | ND | ND | | 0xychlordane | 6 | NG/L | ND | ND | ND | ND | | PCB 1016 | | NG/L | ND | ND | ND | ND | | PCB 1221 | | NG/L | ND | ND | ND | ND | | PCB 1232 | 360 | NG/L | ND | ND | ND | ND | | PCB 1242 | | NG/L | ND | ND | ND | ND | | PCB 1248 | | NG/L | ND | ND | ND | ND | | PCB 1254 | | NG/L | ND | ND | ND | ND | | PCB 1260 | | NG/L | ND | ND | ND | ND | | PCB 1262 | 930 | NG/L | ND | ND | ND | ND | | p,p-DDD | 3 | NG/L | ND | ND | ND | ND | | p,p-DDE | 4 | NG/L | ND | ND | ND | ND | | p,p-DDT | 8 | NG/L | ND | ND | ND | ND | | Toxaphene | 330 | NG/L | ND | ND | ND | ND | | Trans Nonachlor | 5 | NG/L | ND | ND | ND | ND | | 41 dada . Dd 41 dada | ==== | ===== | | | | | | Aldrin + Dieldrin | 7 | NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes | 7 | NG/L | 0 | 0 | 0 | 6 | | DDT and derivatives | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | | NG/L | 0 | 0 | 0 | 0 | | Endosulfans | 6 | NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 0 | 0 | 0 | 0 | | | | ===== | | | | | | Chlorinated Hydrocarbons | 4000 | NG/L | 0 | 0 | 0 | 6 | ND=not detected NA=not analyzed #### Annual 2010 | | | | 656 555 | 556 555 | 656 555 | 656 555 | |---|-----------|--------|-----------|-------------|-----------|----------| | | | | SEC EFF | SEC EFF | SEC EFF | SEC EFF | | A m = T · · th = | MDI | 11-24- | | 04-MAY-2010 | | | | Analyte | MDL | Units | P504527 | P515521 | P525087 | P533636 | | Aldrin | ====
7 | NG/L | ND | ND | ND | ND | | BHC, Alpha isomer | 7 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Beta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Delta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Gamma isomer | 5 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Alpha (cis) Chlordane | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Gamma (trans) Chlordane | 4 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Alpha Chlordene | 4 | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Gamma Chlordene | | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Cis Nonachlor | 3 | NG/L | ND ND | ND. | ND ND | ND
ND | | Dieldrin | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Endosulfan Sulfate | 6 | NG/L | ND | ND
ND | ND
ND | ND | | Alpha Endosulfan | 4 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Beta Endosulfan | 2 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Endrin | 2 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Endrin aldehyde | 9 | NG/L | ND | ND
ND | ND
ND | ND
ND | | Heptachlor | 8 | NG/L | ND | ND | ND | ND
ND | | Heptachlor epoxide | 4 | NG/L | ND | ND
ND | ND
ND | ND | | Methoxychlor | 10 | NG/L | ND | ND
ND | ND
ND | ND
ND | | Mirex | 10 | NG/L | ND
ND | ND
ND | ND | ND
ND | | o,p-DDD | 4 | NG/L | ND | ND
ND | ND
ND | ND | | o,p-DDE | 5 | NG/L | ND | ND
ND | ND
ND | ND
ND | | o,p-DDT | 3 | NG/L | ND | ND
ND | ND | ND
ND | | Oxychlordane | 6 | NG/L | ND | ND
ND | ND
ND | ND
ND | | PCB 1016 | | NG/L | ND | ND
ND | ND
ND | ND
ND | | PCB 1221 | | NG/L | ND | ND
ND | ND
ND | ND
ND | | PCB 1232 | 360 | NG/L | ND. | ND
ND | ND
ND | ND | | PCB 1242 | | NG/L | ND. | ND | ND. | ND | | PCB 1248 | | NG/L | ND | ND | ND
ND | ND
ND | | PCB 1254
| | NG/L | ND. | ND
ND | ND
ND | ND | | PCB 1260 | | NG/L | ND. | ND | ND
ND | ND | | PCB 1262 | 930 | NG/L | ND. | ND | ND
ND | ND | | p,p-DDD | 3 | NG/L | ND. | ND
ND | ND
ND | ND | | p,p-DDE | 4 | NG/L | ND. | ND. | ND | ND | | p,p-DDT | 8 | NG/L | ND. | ND. | ND | ND | | Toxaphene | 330 | NG/L | ND. | ND. | ND | ND | | Trans Nonachlor | 5 | NG/L | ND. | ND. | ND | ND | | ======================================= | ==== | ===== | ========= | ========= | ========= | ======== | | Aldrin + Dieldrin | 7 | NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes | 7 | NG/L | 0 | 0 | 0 | 0 | | DDT and derivatives | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | | NG/L | 0 | 0 | ø | 0 | | Endosulfans | 6 | NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 0 | 0 | 0 | 0 | | ======================================= | ==== | ===== | ======== | ======== | ======== | ======== | | Chlorinated Hydrocarbons | 4000 | NG/L | 0 | 0 | 0 | 0 | | • | | - | | | | | ND=not detected NA=not analyzed #### Annual 2010 | | | | RSL | RSL | RSL | RSL | |---|-----------|--------------|------------------------|------------------------|------------------------|------------------------| | Analyte | MDL | Units | 02-FEB-2010
P504541 | 04-MAY-2010
P515533 | 03-AUG-2010
P525101 | 05-0CT-2010
P533648 | | ======================================= | | | | ======== | | | | Aldrin | 7 | NG/L | ND | ND | ND | ND | | BHC, Alpha isomer | 7 | NG/L | ND | ND | ND | ND | | BHC, Beta isomer | 3 | NG/L | ND | ND | ND | ND | | BHC, Delta isomer | 3 | NG/L | ND | ND | ND | ND | | BHC, Gamma isomer | 5 | NG/L | ND | ND | ND | ND | | Alpha (cis) Chlordane | 3 | NG/L | ND | ND | ND | ND | | Gamma (trans) Chlordane | 4 | NG/L | ND | ND | ND | ND | | Alpha Chlordene | | NG/L | NA | NA | NA | NA | | Gamma Chlordene | | NG/L | NA | NA | NA | NA | | Cis Nonachlor | 3 | NG/L | ND | ND | ND | ND | | Dieldrin | 3 | NG/L | ND | ND | ND | ND | | Endosulfan Sulfate | 6 | NG/L | ND | ND | ND | ND | | Alpha Endosulfan | 4 | NG/L | ND | ND | ND | ND | | Beta Endosulfan | 2 | NG/L | ND | ND | ND | ND | | Endrin | 2 | NG/L | ND | ND | ND | ND | | Endrin aldehyde | 9 | NG/L | ND | ND | ND | ND | | Heptachlor | 8 | NG/L | ND | ND | ND | ND | | Heptachlor epoxide | 4 | NG/L | ND | ND | ND | ND | | Methoxychlor | 10 | NG/L | ND | ND | ND | ND | | Mirex | 10 | NG/L | ND | ND | ND | ND | | o,p-DDD | 4 | NG/L | ND | ND | ND | ND | | o,p-DDE | 5 | NG/L | ND | ND | ND | ND | | o,p-DDT | 3 | NG/L | ND | ND | ND | ND | | 0xychlordane | 6 | NG/L | ND | ND | ND | ND | | PCB 1016 | | NG/L | ND | ND | ND | ND | | PCB 1221 | | NG/L | ND | ND | ND | ND | | PCB 1232 | 360 | NG/L | ND | ND | ND | ND | | PCB 1242 | | NG/L | ND | ND | ND | ND | | PCB 1248 | | NG/L | ND | ND | ND | ND | | PCB 1254 | | NG/L | ND | ND | ND | ND | | PCB 1260 | | NG/L | ND | ND | ND | ND | | PCB 1262 | 930 | NG/L | ND | ND | ND | ND | | p,p-DDD | 3 | NG/L | ND | ND | ND | ND | | p,p-DDE | 4 | NG/L | ND | ND | ND | ND | | p,p-DDT | 8 | NG/L | ND | ND | ND | ND | | Toxaphene | 330 | NG/L | ND | ND | ND | ND | | Trans Nonachlor | 5 | NG/L | ND | ND | ND | ND | | ====================================== | ====
7 | HEFE | 0 | 0 | 0 | 0 | | | 7 | NG/L
NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes
DDT and derivatives | 8 | NG/L
NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | - | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | 4000 | | 0 | 0 | 0 | 0 | | Endosulfans | 6 | NG/L
NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 9 | 9 | 9 | 0 | | -r | - | ===== | ======== | ======== | ======== | ======= | | Chlorinated Hydrocarbons | | NG/L | 0 | 0 | 0 | 0 | ND=not detected NA=not analyzed #### Annual 2010 | | | | REC_WATER | REC_WATER
04-MAY-2010 | REC_WATER | REC_WATER | |---|-----------|-------|-----------|--------------------------|-----------|-----------| | Analyte | MDL | Units | P504543 | P515535 | P525103 | P533650 | | Aldrin | 7 | NG/L | ND | ND | ND | ND | | BHC, Alpha isomer | 7 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Beta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Delta isomer | 3 | NG/L | ND
ND | ND
ND | ND
ND | ND
ND | | BHC, Gamma isomer | 5 | NG/L | ND
ND | ND
ND | ND
ND | ND | | Alpha (cis) Chlordane | 3 | NG/L | ND. | ND
ND | ND. | ND | | Gamma (trans) Chlordane | 4 | NG/L | ND. | ND
ND | ND. | ND | | Alpha Chlordene | • | NG/L | NA
NA | NA | NA
NA | NA
NA | | Gamma Chlordene | | NG/L | NA
NA | NA
NA | NA
NA | NA
NA | | Cis Nonachlor | 3 | NG/L | ND. | ND. | ND. | ND | | Dieldrin | 3 | NG/L | ND | ND | ND | ND | | Endosulfan Sulfate | 6 | NG/L | ND | ND | ND. | ND | | Alpha Endosulfan | 4 | NG/L | ND | ND | ND | ND | | Beta Endosulfan | 2 | NG/L | ND | ND | ND. | ND | | Endrin | 2 | NG/L | ND | ND | ND | ND | | Endrin aldehyde | 9 | NG/L | ND | ND | ND | ND | | Heptachlor | 8 | NG/L | ND | ND | ND | ND | | Heptachlor epoxide | 4 | NG/L | ND | ND | ND | ND | | Methoxychlor | 10 | NG/L | ND | ND | ND | ND | | Mirex | 10 | NG/L | ND | ND | ND | ND | | o,p-DDD | 4 | NG/L | ND | ND | ND | ND | | o,p-DDE | 5 | NG/L | ND | ND | ND | ND | | o,p-DDT | 3 | NG/L | ND | ND | ND | ND | | 0xychlordane | 6 | NG/L | ND | ND | ND | ND | | PCB 1016 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1221 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1232 | 360 | NG/L | ND | ND | ND | ND | | PCB 1242 | 4000 | NG/L | ND | ND | ND | ND | | PCB 1248 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1254 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1260 | 2000 | NG/L | ND | ND | ND | ND | | PCB 1262 | 930 | NG/L | ND | ND | ND | ND | | p,p-DDD | 3 | NG/L | ND | ND | ND | ND | | p,p-DDE | 4 | NG/L | ND | ND | ND | ND | | p,p-DDT | 8 | NG/L | ND | ND | ND | ND | | Toxaphene | 330 | NG/L | ND | ND | ND | ND | | Trans Nonachlor | 5
==== | NG/L | ND | ND | ND | ND | | Aldrin + Dieldrin | ====
7 | NG/L | 0 | 0 | 0 | 0 | | Hexachlorocyclohexanes | 7 | NG/L | 0 | 0 | 0 | 0 | | DDT and derivatives | 8 | NG/L | 0 | 0 | 0 | 0 | | Chlordane + related cmpds. | 6 | NG/L | 0 | 0 | 0 | 0 | | Polychlorinated biphenyls | 4000 | NG/L | 0 | 0 | 0 | 0 | | Endosulfans | 6 | NG/L | 0 | 0 | 0 | 0 | | Heptachlors | 8 | NG/L | 0 | 0 | 0 | 0 | | ======================================= | ==== | | ======== | ======== | ======== | ======== | | Chlorinated Hydrocarbons | 4000 | NG/L | 0 | 0 | 0 | 0 | ND=not detected NA=not analyzed ### SOUTH BAY WATER RECLAMATION PLANT Organophosphorus Pesticides EPA Method 614/622 (with additions) ### Annual 2010 | | | | INF | INF | EFF | EFF | COMB EFF | |-----------------------------------|-----|-------|----------|----------|-------------|----------|----------| | _ | | _ | | | 04-MAY-2010 | | | | Analyte | | Units | P515501 | P533616 | P515506 | P533621 | P515511 | | | | ===== | | ======== | ======== | | | | Demeton 0 | | UG/L | ND | ND | ND | ND | ND | | Demeton S | | UG/L | ND | ND | ND | ND | ND | | Diazinon | | UG/L | ND | ND | ND | ND | ND | | Guthion | | UG/L | ND | ND | ND | ND | ND | | Malathion | | UG/L | ND | ND | ND | ND | ND | | Parathion | .03 | UG/L | ND | ND | ND | ND | ND | | | === | ===== | ======== | ======== | ======== | | ======= | | Dichlorvos | | UG/L | ND | ND | ND | ND | 0.5 | | Dibrom | | UG/L | ND | NR | ND | NR | ND | | Ethoprop | | UG/L | ND | NR | ND | NR | ND | | Phorate | | UG/L | ND | NR | ND | NR | ND | | Sulfotepp | .04 | UG/L | ND | NR | ND | NR | ND | | Disulfoton | .02 | UG/L | ND | ND | ND | ND | ND | | Dimethoate | .04 | UG/L | ND | ND | ND | ND | 4.0 | | Ronnel | .03 | UG/L | ND | NR | ND | NR | ND | | TrichloroNRte | .04 | UG/L | ND | NR | ND | NR | ND | | Merphos | .09 | UG/L | ND | NR | ND | NR | ND | | Dichlofenthion | .03 | UG/L | ND | NR | ND | NR | ND | | Tokuthion | .06 | UG/L | ND | NR | ND | NR | ND | | Stirophos | .03 | UG/L | ND | ND | ND | ND | ND | | Bolstar | .07 | UG/L | ND | NR | ND | NR | ND | | Fensulfothion | .07 | UG/L | ND | NR | ND | NR | ND | | EPN | .09 | UG/L | ND | NR | ND | NR | ND | | Coumaphos | .15 | UG/L | ND | ND | ND | ND | ND | | Mevinphos, e isomer | .05 | UG/L | ND | NR | ND | NR | ND | | Mevinphos, z isomer | .3 | UG/L | ND | NR | ND | NR | ND | | Chlorpyrifos | .03 | UG/L | ND | ND | ND | ND | ND | | | === | | ======== | ======== | ======== | ======== | ======== | | Thiophosphorus Pesticides | .15 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Demeton -O, -S | .15 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | === | | ======== | ======== | ======== | ======== | ======== | | Total Organophosphorus Pesticides | .3 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | ND=not detected NR=not required ### SOUTH BAY WATER RECLAMATION PLANT Organophosphorus Pesticides EPA Method 614/622 (with additions) ### Annual 2010 | | | | COMB EFF | PRI EFF | PRI EFF | SEC EFF | SEC EFF | |---|-----|-------|----------|----------|----------|-------------|----------| | | | | | | | 04-MAY-2010 | | | Analyte | MDI | Units | P533626 | P515516 | P533631 | P515521 | P533636 | | ======================================= | | ===== | ======== | ======== | ======== | ======== | ======== | | Demeton O | .15 | UG/L | ND | ND | ND | ND | ND | | Demeton S | | UG/L | ND | ND | ND | ND | ND | | Diazinon | | UG/L | ND | ND | ND | ND | ND | | Guthion | | UG/L | ND | ND | ND | ND | ND | | Malathion | | UG/L | 0.3 | ND | ND | ND | ND | | Parathion | .03 | UG/L | ND | ND | ND | ND | ND | | ======================================= | === | ===== | ======== | | | | ======== | | Dichlorvos | .05 | UG/L | 0.4 | ND | ND | ND | ND | | Dibrom | .2 | UG/L | NR | ND | NR | ND | NR | | Ethoprop | .04 | UG/L | NR | ND | NR | ND | NR | | Phorate | .04 | UG/L | NR | ND | NR | ND | NR | | Sulfotepp | .04 | UG/L | NR | ND | NR | ND | NR | | Disulfoton | .02 | UG/L | ND | ND | ND | ND | ND | | Dimethoate | .04 | UG/L | ND | ND | ND
 ND | ND | | Ronnel | .03 | UG/L | NR | ND | NR | ND | NR | | TrichloroNRte | .04 | UG/L | NR | ND | NR | ND | NR | | Merphos | .09 | UG/L | NR | ND | NR | ND | NR | | Dichlofenthion | .03 | UG/L | NR | ND | NR | ND | NR | | Tokuthion | .06 | UG/L | NR | ND | NR | ND | NR | | Stirophos | .03 | UG/L | ND | ND | ND | ND | ND | | Bolstar | .07 | UG/L | NR | ND | NR | ND | NR | | Fensulfothion | .07 | UG/L | NR | ND | NR | ND | NR | | EPN | .09 | UG/L | NR | ND | NR | ND | NR | | Coumaphos | .15 | UG/L | ND | ND | ND | ND | ND | | Mevinphos, e isomer | .05 | UG/L | NR | ND | NR | ND | NR | | Mevinphos, z isomer | .3 | UG/L | NR | ND | NR | ND | NR | | Chlorpyrifos | .03 | UG/L | ND | ND | ND | ND | ND | | | | ===== | ======== | ======== | ======== | ======== | ======== | | Thiophosphorus Pesticides | | UG/L | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | | Demeton -0, -S | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Organophosphorus Pesticides | | UG/L | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | ND=not detected NR=not required ### SOUTH BAY WATER RECLAMATION PLANT Organophosphorus Pesticides EPA Method 614/622 (with additions) ### Annual 2010 | | | | RSL | RSL | RECLAIM | RECLAIM | |---|-----|---------------|-------------|-------------|-------------|-------------| | | | | 04-MAY-2010 | 05-OCT-2010 | 04-MAY-2010 | 05-OCT-2010 | | Analyte | MDL | Units | P515533 | P533648 | P515535 | P533650 | | ======================================= | === | ===== | ======== | ======== | ======== | ======== | | Demeton O | .15 | UG/L | ND | ND | ND | ND | | Demeton S | .08 | UG/L | ND | ND | ND | ND | | Diazinon | .03 | UG/L | ND | ND | ND | ND | | Guthion | .15 | UG/L | ND | ND | ND | ND | | Malathion | .03 | UG/L | ND | ND | ND | ND | | Parathion | .03 | UG/L | ND | ND | ND | ND | | ======================================= | === | ===== | ======== | | | ======== | | Dichlorvos | .05 | UG/L | ND | ND | ND | ND | | Dibrom | .2 | UG/L | ND | NR | ND | NR | | Ethoprop | .04 | UG/L | ND | NR | ND | NR | | Phorate | .04 | UG/L | ND | NR | ND | NR | | Sulfotepp | .04 | UG/L | ND | NR | ND | NR | | Disulfoton | .02 | UG/L | ND | ND | ND | ND | | Dimethoate | .04 | UG/L | ND | ND | ND | ND | | Ronnel | .03 | UG/L | ND | NR | ND | NR | | TrichloroNRte | .04 | UG/L | ND | NR | ND | NR | | Merphos | .09 | UG/L | ND | NR | ND | NR | | Dichlofenthion | .03 | UG/L | ND | NR | ND | NR | | Tokuthion | .06 | UG/L | ND | NR | ND | NR | | Stirophos | .03 | UG/L | ND | ND | ND | ND | | Bolstar | .07 | UG/L | ND | NR | ND | NR | | Fensulfothion | .07 | UG/L | ND | NR | ND | NR | | EPN | .09 | UG/L | ND | NR | ND | NR | | Coumaphos | .15 | UG/L | ND | ND | ND | ND | | Mevinphos, e isomer | .05 | UG/L | ND | NR | ND | NR | | Mevinphos, z isomer | .3 | UG/L | ND | NR | ND | NR | | Chlorpyrifos | | UG/L | ND | ND | ND | ND | | Thiophosphorus Pesticides | | =====
UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Demeton -0, -S | .15 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Organophosphorus Pesticides | | | 0.0 | 0.0 | 0.0 | 0.0 | ND=not detected NR=not required ### Annual 2010 | Analyte | MDL | Units | SB_INF_02
02-FEB-2010
P504507 | SB_INF_02
04-MAY-2010
P515501 | SB_INF_02
02-AUG-2010
P525067 | SB_INF_02
05-OCT-2010
P533616 | |--|------|--------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | | | | | | ========== | | | Acenaphthene | 1.8 | UG/L | ND | ND | ND | ND | | Acenaphthylene | | UG/L | ND | ND | ND | ND | | Anthracene | | UG/L | ND | ND | ND | ND | | Benzidine | | UG/L | ND | ND | ND | ND | | Benzo[A]anthracene | | UG/L | ND | ND | ND | ND | | <pre>3,4-benzo(B)fluoranthene Benzo[K]fluoranthene</pre> | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Benzo[A]pyrene | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Benzo[G,H,I]perylene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 4-bromophenyl phenyl ether | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | bis(2-chloroethoxy)methane | | UG/L | ND | ND. | ND. | ND | | bis(2-chloroethyl) ether | | UG/L | ND | ND | ND | ND | | Bis-(2-chloroisopropyl) ether | | UG/L | ND | ND | ND | ND | | 4-chlorophenyl phenyl ether | | UG/L | ND | ND | ND | ND | | 2-chloronaphthalene | | UG/L | ND | ND | ND | ND | | Chrysene | 1.16 | UG/L | ND | ND | ND | ND | | Dibenzo(A,H)anthracene | 1.01 | UG/L | ND | ND | ND | ND | | Butyl benzyl phthalate | 2.84 | UG/L | 3.9 | ND | ND | ND | | Di-n-butyl phthalate | 3.96 | UG/L | ND | ND | ND | ND | | Bis-(2-ethylhexyl) phthalate | 8.96 | UG/L | 10.3 | 11.1 | 12.2 | 23.6 | | Diethyl phthalate | 3.05 | UG/L | 10.8 | 13.2 | 9.7 | 8.9 | | Dimethyl phthalate | 1.44 | UG/L | ND | ND | ND | ND | | Di-n-octyl phthalate | 1 | UG/L | ND | ND | ND | ND | | 3,3-dichlorobenzidine | | UG/L | ND | ND | ND | ND | | 2,4-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 2,6-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 1,2-diphenylhydrazine | | UG/L | ND | ND | ND | ND | | Fluoranthene | | UG/L | ND | ND | ND | ND | | Fluorene
Hexachlorobenzene | | UG/L | ND | ND ND | ND
ND | ND
ND | | Hexachlorobutadiene | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachlorocyclopentadiene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachloroethane | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Indeno(1,2,3-CD)pyrene | | UG/L | ND ND | ND
ND | ND | ND | | Isophorone | | UG/L | ND. | 33.8 | ND | ND | | Naphthalene | | UG/L | ND | ND | ND | ND | | Nitrobenzene | | UG/L | ND | ND | ND | ND | | N-nitrosodimethylamine | | UG/L | ND | ND | ND | ND | | N-nitrosodi-n-propylamine | | UG/L | ND | ND | ND | ND | | N-nitrosodiphenylamine | 3.48 | UG/L | ND | ND | ND | ND | | Phenanthrene | 1.34 | UG/L | ND | ND | ND | ND | | Pyrene | 1.43 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | 1.52 | UG/L | ND | ND | ND | ND | | | | | | | | | | Polynuc. Aromatic Hydrocarbons | | | 0.0 | 0.0 | 0.0 | 0.0 | | Base/Neutral Compounds | | UG/L | 25.0 | 58.1 | 21.9 | 32.5 | | Additional analytes determined | ==== | ===== | | | =========== | | | Benzo[e]pyrene | | UG/L | ND | ND | ND | ND | | Biphenyl | | UG/L | ND | ND | ND | ND | | 2,6-dimethylnaphthalene | | UG/L | ND | ND | ND | ND | | 1-methylnaphthalene | | UG/L | ND | ND | ND | ND | | 1-methylphenanthrene | | UG/L | ND | ND | ND | ND | | 2-methylnaphthalene | 2.14 | UG/L | ND | ND | ND | ND | | 2,3,5-trimethylnaphthalene | 2.18 | UG/L | ND | ND | ND | ND | | Perylene | | UG/L | ND | ND | ND | ND | | Pyridine | 3.33 | UG/L | ND | ND | ND | ND | | | | | | | | | ### Annual 2010 | Analyte | MDL | Units | SB_OUTFALL_01
02-FEB-2010
P504512 | SB_OUTFALL_01
04-MAY-2010
P515506 | SB_OUTFALL_01
03-AUG-2010
P525072 | SB_OUTFALL_01
05-OCT-2010
P533621 | |---|------|--------------|---|---|---|---| | ======================================= | ==== | | =========== | ========== | ========== | | | Acenaphthene | 1.8 | UG/L | ND | ND | ND | ND | | Acenaphthylene | | UG/L | ND | ND | ND | ND | | Anthracene | 1.29 | UG/L | ND | ND | ND | ND | | Benzidine | 1.52 | | ND | ND | ND | ND | | Benzo[A]anthracene | 1.1 | | ND | ND | ND | ND | | 3,4-benzo(B)fluoranthene | 1.35 | | ND | ND | ND | ND | | Benzo[K]fluoranthene | 1.49 | | ND | ND | ND | ND | | Benzo[A]pyrene | 1.25 | / | ND | ND | ND | ND | | Benzo[G,H,I]perylene | | UG/L | ND | ND | ND | ND | | 4-bromophenyl phenyl ether bis(2-chloroethoxy)methane | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | bis(2-chloroethyl) ether | 1.38 | , | ND
ND | ND
ND | ND
ND | ND
ND | | Bis-(2-chloroisopropyl) ether | 1.16 | | ND
ND | ND
ND | ND
ND | ND
ND | | 4-chlorophenyl phenyl ether | 1.57 | | ND ND | ND
ND | ND | ND
ND | | 2-chloronaphthalene | 1.87 | | ND | ND. | ND | ND | | Chrysene | | UG/L | ND | ND | ND | ND | | Dibenzo(A,H)anthracene | 1.01 | | ND | ND | ND | ND | | Butyl benzyl phthalate | | UG/L | ND | ND | ND | ND | | Di-n-butyl phthalate | 3.96 | | ND | ND | ND | ND | | Bis-(2-ethylhexyl) phthalate | 8.96 | | 9.8 | ND | ND | ND | | Diethyl phthalate | 3.05 | UG/L | ND | ND | ND | ND | | Dimethyl phthalate | 1.44 | UG/L | ND | ND | ND | ND | | Di-n-octyl phthalate | 1 | UG/L | ND | ND | ND | ND | | 3,3-dichlorobenzidine | 2.44 | UG/L | ND | ND | ND | ND | | 2,4-dinitrotoluene | 1.36 | UG/L | ND | ND | ND | ND | | 2,6-dinitrotoluene | 1.53 | | ND | ND | ND | ND | | 1,2-diphenylhydrazine | | UG/L | ND | ND | ND | ND | | Fluoranthene | | UG/L | ND | ND | ND | ND | | Fluorene | 1.61 | | ND | ND | ND | ND | | Hexachlorobenzene | 1.48 | | ND | ND | ND | ND | | Hexachlorobutadiene | 1.64 | | ND | ND | ND | ND | | Hexachlorocyclopentadiene
Hexachloroethane | 1.25 | | ND
ND | ND
ND | ND
ND | ND
ND | | Indeno(1,2,3-CD)pyrene | 1.32 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Isophorone | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Naphthalene | 1.65 | | ND
ND | ND
ND | ND | ND
ND | | Nitrobenzene | | UG/L | ND | ND. | ND | ND | | N-nitrosodimethylamine | 1.27 | | ND | ND | ND | ND | | N-nitrosodi-n-propylamine | 1.16 | | ND | ND | ND | ND | | N-nitrosodiphenylamine | | UG/L | ND | ND | ND | ND | | Phenanthrene | 1.34 | UG/L | ND | ND | ND | ND | | Pyrene | 1.43 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | 1.52 | UG/L | ND | ND | ND | ND | | | ==== | ===== | | | | | | Polynuc. Aromatic Hydrocarbons | | | 0.0 | 0.0 | 0.0 | 0.0 | | Base/Neutral Compounds | | UG/L | 9.8 | 0.0 | 0.0 | 0.0 | | Additional analytes determined | | | | | | | | Benzo[e]pyrene | | UG/L | ND | ND | ND | ND | | Biphenyl | 2.29 | | ND
ND | ND
ND | ND
ND | ND
ND | |
2,6-dimethylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1-methylnaphthalene | 2.18 | | ND
ND | ND
ND | ND | ND
ND | | 1-methylphenanthrene | | UG/L | ND | ND | ND | ND | | 2-methylnaphthalene | 2.14 | | ND | ND | ND | ND | | 2,3,5-trimethylnaphthalene | | UG/L | ND | ND | ND | ND | | Perylene | 1.41 | UG/L | ND | ND | ND | ND | | Pyridine | 3.33 | UG/L | ND | ND | ND | ND | | | | | | | | | ### Annual 2010 | Analyte | MDL | Units | 02-FEB-2010
P504517 | 04-MAY-2010
P515511 | SB_ITP_COMB_EFF
03-AUG-2010
P525077 | 05-OCT-2010
P533626 | |--|------|---------------|------------------------|------------------------|---|------------------------| | Acananhthana | 1.8 | =====
UG/L | | ND | | | | Acenaphthene
Acenaphthylene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Anthracene | | UG/L | ND | ND
ND | ND
ND | ND
ND | | Benzidine | | UG/L | ND. | ND. | ND. | ND
ND | | Benzo[A]anthracene | | UG/L | ND. | ND | ND. | ND | | 3,4-benzo(B)fluoranthene | | UG/L | ND | ND | ND | ND | | Benzo[K]fluoranthene | 1.49 | UG/L | ND | ND | ND | ND | | Benzo[A]pyrene | 1.25 | UG/L | ND | ND | ND | ND | | Benzo[G,H,I]perylene | 1.09 | UG/L | ND | ND | ND | ND | | 4-bromophenyl phenyl ether | 1.4 | UG/L | ND | ND | ND | ND | | bis(2-chloroethoxy)methane | | UG/L | ND | ND | ND | ND | | bis(2-chloroethyl) ether | | UG/L | ND | ND | ND | ND | | Bis-(2-chloroisopropyl) ether | | UG/L | ND | ND | ND | ND | | 4-chlorophenyl phenyl ether | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2-chloronaphthalene
Chrysene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Dibenzo(A,H)anthracene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Butyl benzyl phthalate | | UG/L | ND. | ND | ND
ND | ND | | Di-n-butyl phthalate | | UG/L | ND ND | ND. | ND ND | ND
ND | | Bis-(2-ethylhexyl) phthalate | | UG/L | ND. | ND. | ND. | ND | | Diethyl phthalate | | UG/L | 17.4 | 20.2 | 13.7 | 16.5 | | Dimethyl phthalate | 1.44 | UG/L | ND | ND | ND | ND | | Di-n-octyl phthalate | 1 | UG/L | ND | ND | ND | ND | | 3,3-dichlorobenzidine | 2.44 | UG/L | ND | ND | ND | ND | | 2,4-dinitrotoluene | 1.36 | UG/L | ND | ND | ND | ND | | 2,6-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 1,2-diphenylhydrazine | | UG/L | ND | ND | ND | ND | | Fluoranthene | | UG/L | ND | ND | ND | ND | | Fluorene | | UG/L | ND | ND | ND | ND | | Hexachlorobenzene
Hexachlorobutadiene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachlorocyclopentadiene | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachloroethane | | UG/L | ND | ND
ND | ND
ND | ND
ND | | Indeno(1,2,3-CD)pyrene | | UG/L | ND. | ND | ND. | ND | | Isophorone | | UG/L | ND | ND | ND | ND | | Naphthalene | | UG/L | ND | ND | ND | ND | | Nitrobenzene | 1.6 | UG/L | ND | ND | ND | ND | | N-nitrosodimethylamine | 1.27 | UG/L | ND | ND | ND | ND | | N-nitrosodi-n-propylamine | 1.16 | UG/L | ND | ND | ND | ND | | N-nitrosodiphenylamine | | UG/L | ND | ND | ND | ND | | Phenanthrene | | UG/L | ND | ND | ND | ND | | Pyrene | | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | | UG/L | ND | ND | ND | ND | | Polynuc. Aromatic Hydrocarbons | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Base/Neutral Compounds | | UG/L | 17.4 | 20.2 | 13.7 | 16.5 | | Additional analytes determined | | | | | | | | Renzo [e] nymene | | | | | ND | | | Benzo[e]pyrene | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Biphenyl 2,6-dimethylnaphthalene | | UG/L
UG/L | ND
ND | שא
ND | ND
ND | ND
ND | | 1-methylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1-methylphenanthrene | | UG/L | ND | ND
ND | ND
ND | ND
ND | | 2-methylnaphthalene | | UG/L | ND ND | ND | ND
ND | ND | | 2,3,5-trimethylnaphthalene | | UG/L | ND | ND | ND | ND | | Perylene | | UG/L | ND | ND | ND | ND | | Pyridine | | UG/L | ND | ND | ND | ND | | | | | | | | | ### Annual 2010 | Analyte | MDL | Units | SB_PRIEFF_10
02-FEB-2010
P504522 | SB_PRIEFF_10
04-MAY-2010
P515516 | SB_PRIEFF_10
02-AUG-2010
P525082 | SB_PRIEFF_10
05-OCT-2010
P533631 | |-------------------------------------|-------|-------|--|--|--|--| | | ==== | ===== | ========== | | | ========== | | Acenaphthene | 1.8 | UG/L | ND | ND | ND | ND | | Acenaphthylene | | UG/L | ND | ND | ND | ND | | Anthracene | 1.29 | UG/L | ND | ND | ND | ND | | Benzidine | 1.52 | UG/L | ND | ND | ND | ND | | Benzo[A]anthracene | | UG/L | ND | ND | ND | ND | | <pre>3,4-benzo(B)fluoranthene</pre> | 1.35 | UG/L | ND | ND | ND | ND | | Benzo[K]fluoranthene | | UG/L | ND | ND | ND | ND | | Benzo[A]pyrene | | UG/L | ND | ND | ND | ND | | Benzo[G,H,I]perylene | | UG/L | ND | ND | ND | ND | | 4-bromophenyl phenyl ether | | UG/L | ND | ND | ND | ND | | bis(2-chloroethoxy)methane | | UG/L | ND | ND | ND | ND | | bis(2-chloroethyl) ether | | UG/L | ND | ND | ND | ND | | Bis-(2-chloroisopropyl) ether | | UG/L | ND | ND | ND | ND | | 4-chlorophenyl phenyl ether | | UG/L | ND | ND | ND | ND | | 2-chloronaphthalene | | UG/L | ND | ND | ND | ND | | Chrysene | | UG/L | ND | ND | ND | ND | | Dibenzo(A,H)anthracene | | UG/L | ND | ND | ND | ND | | Butyl benzyl phthalate | | UG/L | ND | ND | ND | ND | | Di-n-butyl phthalate | | UG/L | ND | ND | ND | ND | | Bis-(2-ethylhexyl) phthalate | | UG/L | 9.8 | 12.3 | 12.6 | 28.5 | | Diethyl phthalate | | UG/L | 5.5 | 10.7 | 6.4 | 6.5 | | Dimethyl phthalate | | UG/L | ND | ND | ND | ND | | Di-n-octyl phthalate | 1 | UG/L | ND | ND | ND | ND | | 3,3-dichlorobenzidine | | UG/L | ND | ND | ND | ND | | 2,4-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 2,6-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 1,2-diphenylhydrazine | | UG/L | ND | ND | ND | ND | | Fluoranthene | | UG/L | ND | ND | ND | ND | | Fluorene | | UG/L | ND | ND | ND | ND | | Hexachlorobenzene | | UG/L | ND | ND | ND | ND | | Hexachlorobutadiene | | UG/L | ND | ND | ND | ND | | Hexachlorocyclopentadiene | | UG/L | ND | ND | ND | ND | | Hexachloroethane | | UG/L | ND | ND | ND | ND | | Indeno(1,2,3-CD)pyrene | | UG/L | ND | ND | ND | ND | | Isophorone | | UG/L | ND | ND | ND | ND | | Naphthalene | | UG/L | ND | ND | ND | ND | | Nitrobenzene | | UG/L | ND | ND | ND | ND | | N-nitrosodimethylamine | | UG/L | ND | ND | ND | ND | | N-nitrosodi-n-propylamine | | UG/L | ND | ND | ND | ND | | N-nitrosodiphenylamine | | UG/L | ND | ND | ND | ND | | Phenanthrene | | UG/L | ND | ND | ND | ND | | Pyrene | | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | | UG/L | ND | ND | ND | ND | | Polynuc. Aromatic Hydrocarbons | 1.77 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | Base/Neutral Compounds | 8.96 | UG/L | 15.3 | 23.0 | 19.0 | 35.0 | | Additional analytes determined | | | | | | | | Benzo[e]pyrene | | UG/L | ND | ND | ND | ND | | Biphenyl | | UG/L | ND | ND
ND | ND. | ND
ND | | 2,6-dimethylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1-methylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1-methylphenanthrene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2-methylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2,3,5-trimethylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Perylene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Pyridine | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | | رد. د | 30, L | ND | ND | ND | ND | ### Annual 2010 | Analyte | MDL | Units | SB_SEC_EFF_20
02-FEB-2010
P504527 | SB_SEC_EFF_20
04-MAY-2010
P515521 | SB_SEC_EFF_20
02-AUG-2010
P525087 | SB_SEC_EFF_20
05-0CT-2010
P533636 | |--|------|--------------|---|---|---|---| | | ==== | | ======================================= | | | ========= | | Acenaphthene | 1.8 | UG/L | ND | ND | ND | ND | | Acenaphthylene | | UG/L | ND | ND | ND | ND | | Anthracene | | UG/L | ND | ND | ND | ND | | Benzidine | | UG/L | ND | ND | ND | ND | | Benzo[A]anthracene | | UG/L | ND | ND | ND | ND | | 3,4-benzo(B)fluoranthene | | UG/L | ND | ND | ND | ND | | Benzo[K]fluoranthene | | UG/L | ND | ND
ND | ND
ND | ND | | Benzo[A]pyrene
Benzo[G,H,I]perylene | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 4-bromophenyl phenyl ether | 1.4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | bis(2-chloroethoxy)methane | | UG/L | ND ND | ND. | ND. | ND | | bis(2-chloroethyl) ether | | UG/L | ND. | ND | ND. | ND | | Bis-(2-chloroisopropyl) ether | | UG/L | ND | ND | ND | ND | | 4-chlorophenyl phenyl ether | | UG/L | ND | ND | ND | ND | | 2-chloronaphthalene | | UG/L | ND | ND | ND | ND | | Chrysene | 1.16 | UG/L | ND | ND | ND | ND | | Dibenzo(A,H)anthracene | 1.01 | UG/L | ND | ND | ND | ND | | Butyl benzyl phthalate | 2.84 | UG/L | ND | ND | ND | ND | | Di-n-butyl phthalate | 3.96 | UG/L | ND | ND | ND | ND | | Bis-(2-ethylhexyl) phthalate | 8.96 | UG/L | ND | ND | ND | ND | | Diethyl phthalate | 3.05 | UG/L | ND | ND | ND | ND | | Dimethyl phthalate | | UG/L | ND | ND | ND | ND | | Di-n-octyl phthalate | 1 | UG/L | ND | ND | ND | ND | | 3,3-dichlorobenzidine | | UG/L | ND | ND | ND | ND | | 2,4-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 2,6-dinitrotoluene | | UG/L | ND | ND | ND | ND | | 1,2-diphenylhydrazine | | UG/L | ND | ND | ND | ND | | Fluoranthene | | UG/L | ND | ND | ND | ND | | Fluorene | | UG/L | ND
ND | ND ND | ND
ND | ND
ND | | Hexachlorobenzene
Hexachlorobutadiene | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachlorocyclopentadiene | | UG/L | ND
ND |
ND
ND | ND
ND | ND
ND | | Hexachloroethane | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Indeno(1,2,3-CD)pyrene | | UG/L | ND ND | ND. | ND
ND | ND
ND | | Isophorone | | UG/L | ND. | ND | ND. | ND | | Naphthalene | | UG/L | ND | ND | ND | ND | | Nitrobenzene | 1.6 | UG/L | ND | ND | ND | ND | | N-nitrosodimethylamine | 1.27 | UG/L | ND | ND | ND | ND | | N-nitrosodi-n-propylamine | 1.16 | UG/L | ND | ND | ND | ND | | N-nitrosodiphenylamine | 3.48 | UG/L | ND | ND | ND | ND | | Phenanthrene | 1.34 | UG/L | ND | ND | ND | ND | | Pyrene | 1.43 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | 1.52 | UG/L | ND | ND | ND | ND | | | | | ======================================= | | | ======================================= | | Polynuc. Aromatic Hydrocarbons | | | 0.0 | 0.0 | 0.0 | 0.0 | | Base/Neutral Compounds | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Additional analytes determined | | | | | | | | Benzo[e]pyrene | | UG/L | ND | ND | ND | ND | | Biphenyl | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2,6-dimethylnaphthalene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1-methylnaphthalene | | UG/L | ND ND | ND | ND ND | ND | | 1-methylphenanthrene | | UG/L | ND | ND | ND | ND | | 2-methylnaphthalene | | UG/L | ND | ND | ND | ND | | 2,3,5-trimethylnaphthalene | | UG/L | ND | ND | ND | ND | | Perylene | 1.41 | UG/L | ND | ND | ND | ND | | Pyridine | 3.33 | UG/L | ND | ND | ND | ND | | | | | | | | | ### Annual 2010 | | | | SB_REC_WATER_34 | | SB_REC_WATER_34 | SB_REC_WATER_34 | |--|--------------|--------|-----------------|-------------|-----------------|-----------------| | Analysta | MDI | 11-3-4 | 02-FEB-2010 | 04-MAY-2010 | 02-AUG-2010 | 05-0CT-2010 | | Analyte
==================================== | MDL
==== | Units | P504543 | P515535 | P525103 | P533650 | | Acenaphthene | 1.8 | UG/L | ND | ND | ND | ND | | Acenaphthylene | 1.77 | • | ND | ND | ND | ND | | Anthracene | 1.29 | UG/L | ND | ND | ND | ND | | Benzidine | 1.52 | UG/L | ND | ND | ND | ND | | Benzo[A]anthracene | 1.1 | UG/L | ND | ND | ND | ND | | <pre>3,4-benzo(B)fluoranthene</pre> | 1.35 | UG/L | ND | ND | ND | ND | | Benzo[K]fluoranthene | 1.49 | UG/L | ND | ND | ND | ND | | Benzo[A]pyrene | 1.25 | • | ND | ND | ND | ND | | Benzo[G,H,I]perylene | 1.09 | • | ND | ND | ND | ND | | 4-bromophenyl phenyl ether | | UG/L | ND | ND | ND | ND | | bis(2-chloroethoxy)methane | 1.01 | • | ND | ND | ND | ND
ND | | bis(2-chloroethyl) ether | 1.38
1.16 | | ND
ND | ND
ND | ND
ND | ND
ND | | Bis-(2-chloroisopropyl) ether
4-chlorophenyl phenyl ether | 1.57 | | ND
ND | ND
ND | ND
ND | ND
ND | | 2-chloronaphthalene | 1.87 | | ND
ND | ND
ND | ND
ND | ND
ND | | Chrysene | 1.16 | | ND
ND | ND
ND | ND
ND | ND
ND | | Dibenzo(A,H)anthracene | 1.01 | | ND ND | ND. | ND. | ND
ND | | Butyl benzyl phthalate | 2.84 | | ND | ND | ND | ND | | Di-n-butyl phthalate | 3.96 | | ND | ND | ND | ND | | Bis-(2-ethylhexyl) phthalate | 8.96 | • | ND | ND | ND | ND | | Diethyl phthalate | 3.05 | UG/L | ND | ND | ND | ND | | Dimethyl phthalate | 1.44 | UG/L | ND | ND | ND | ND | | Di-n-octyl phthalate | 1 | UG/L | ND | ND | ND | ND | | 3,3-dichlorobenzidine | 2.44 | UG/L | ND | ND | ND | ND | | 2,4-dinitrotoluene | 1.36 | UG/L | ND | ND | ND | ND | | 2,6-dinitrotoluene | 1.53 | , | ND | ND | ND | ND | | 1,2-diphenylhydrazine | 1.37 | | ND | ND | ND | ND | | Fluoranthene | 1.33 | • | ND | ND | ND | ND | | Fluorene | 1.61 | | ND | ND | ND | ND | | Hexachlorobenzene | 1.48 | | ND | ND | ND | ND | | Hexachlorobutadiene | 1.64 | | ND
ND | ND
ND | ND | ND
ND | | Hexachlorocyclopentadiene
Hexachloroethane | 1.25
1.32 | | ND
ND | ND
ND | ND
ND | ND
ND | | Indeno(1,2,3-CD)pyrene | 1.14 | | ND
ND | ND
ND | ND
ND | ND
ND | | Isophorone | 1.53 | | ND
ND | ND
ND | ND
ND | ND
ND | | Naphthalene | 1.65 | | ND. | ND. | ND. | ND | | Nitrobenzene | 1.6 | UG/L | ND. | ND. | ND | ND | | N-nitrosodimethylamine | 1.27 | • | ND | ND | ND | ND | | N-nitrosodi-n-propylamine | 1.16 | UG/L | ND | ND | ND | ND | | N-nitrosodiphenylamine | 3.48 | UG/L | ND | ND | ND | ND | | Phenanthrene | 1.34 | UG/L | ND | ND | ND | ND | | Pyrene | 1.43 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | 1.52 | UG/L | ND | ND | ND | ND | | | ==== | ===== | | | | | | Polynuc. Aromatic Hydrocarbons | | | 0.0 | 0.0 | 0.0 | 0.0 | | Base/Neutral Compounds | 8.96 | | 0.0 | 0.0 | 0.0 | 0.0 | | Additional analytes determined | | | | | | | | | | | | | | | | Benzo[e]pyrene | | UG/L | ND | ND | ND | ND | | Biphenyl | 2.29 | | ND | ND | ND | ND | | 2,6-dimethylnaphthalene | 2.16 | | ND
ND | ND
ND | ND | ND
ND | | 1-methylnaphthalene | 2.18 | | ND ND | ND ND | ND ND | ND
ND | | <pre>1-methylphenanthrene 2-methylnaphthalene</pre> | 1.46
2.14 | | ND
ND | ND
ND | ND
ND | ND
ND | | 2,3,5-trimethylnaphthalene | 2.14 | | ND
ND | ND
ND | ND
ND | ND
ND | | Perylene | 1.41 | | ND
ND | ND
ND | ND
ND | ND
ND | | Pyridine | | UG/L | ND
ND | ND
ND | ND | ND
ND | | - | | • | | | | | | | | | INFLUENT | INFLUENT | INFLUENT | INFLUENT | |---|------|-------|-------------|-------------|-------------|-------------| | | | | 02-FEB-2010 | 04-MAY-2010 | 02-AUG-2010 | 05-OCT-2010 | | Analyte: | MDL | Units | P504507 | P515501 | P525067 | P533616 | | | ==== | ===== | ======== | ======== | ======== | ======== | | 2-chlorophenol | | UG/L | ND | ND | ND | ND | | 2,4-dichlorophenol | 1.01 | UG/L | ND | ND | ND | ND | | 4-chloro-3-methylphenol | 1.67 | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | 1.65 | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | 26.7 | 47.7 | 44.2 | 36.5 | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | ND | ND | ND | | | ==== | ===== | ======== | ======== | ======== | ======== | | 2-methylphenol | | UG/L | ND | ND | ND | ND | | <pre>3-methylphenol(4-MP is unresolved)</pre> | | UG/L | NA | NA | NA | NA | | 4-methylphenol(3-MP is unresolved) | 2.11 | UG/L | 101 | 123 | 120 | 92.5 | | 2,4,5-trichlorophenol | | UG/L | ND | ND | ND | ND | | Tatal Chloringtod Bhanala | | | | | | | | Total Chlorinated Phenols | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | | UG/L | 26.7 | 47.7 | 44.2 | 36.5 | | Total Phenols | | UG/L | 26.7 | 47.7 | 44.2 | 36.5 | | | | | EFFLUENT | EFFLUENT | EFFLUENT | EFFLUENT | |------------------------------------|------|---------------|-------------|-------------|-------------|-------------| | | | | 02-FEB-2010 | 04-MAY-2010 | 03-AUG-2010 | 05-0CT-2010 | | Analyte: | MDL | Units | P504512 | P515506 | P525072 | P533621 | | 2-chlorophenol | 1.32 | UG/L | ND | ND | ND | ND | | 2,4-dichlorophenol | | UG/L | ND. | ND | ND | ND | | 4-chloro-3-methylphenol | | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | 1.65 | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | ND | ND | ND | ND | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | ND | ND | ND | | 2-methylphenol | 2 15 | =====
UG/L | ND | ND | ND | ND | | 3-methylphenol(4-MP is unresolved) | 2.15 | UG/L | NA
NA | NA
NA | NA
NA | NA
NA | | 4-methylphenol(3-MP is unresolved) | 2 11 | , | NA
ND | NA
ND | NA
ND | ND | | 2,4,5-trichlorophenol | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2,4,5-tritiniorophenoi | | | ND | ND | ND | ND | | Total Chlorinated Phenols | 1.67 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Tatal Discusion | ==== | ===== | ======== | | | | | Total Phenols | 2.16 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | | | COMB EFF | COMB EFF | COMB EFF | COMB EFF | |------------------------------------|------|-------|-------------|-------------|-------------|-------------| | | | | 02-FEB-2010 | 04-MAY-2010 | 03-AUG-2010 | 05-0CT-2010 | | Analyte: | MDL | Units | P504517 | P515511 | P525077 | P533626 | | | ==== | ===== | ======== | ======== | ======== | ======== | | 2-chlorophenol | 1.32 | UG/L | ND | ND | ND | ND | | 2,4-dichlorophenol | 1.01 | UG/L | ND | ND | ND | ND | | 4-chloro-3-methylphenol | 1.67 | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | 1.65 | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | 29.1 | 41.3 | 32.9 | 35.1 | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | ND | ND | ND | | | ==== | ===== | | | | | | 2-methylphenol | 2.15 | UG/L | ND | ND | ND | ND | | 3-methylphenol(4-MP is unresolved) | | UG/L | NA | NA | NA | NA
- | | 4-methylphenol(3-MP is unresolved) | | | 26.9 | 20.3 | 3.1 | 5.1 | | 2,4,5-trichlorophenol | 1.66 | UG/L | ND | ND | ND | ND | | | | ===== | | | | | | Total Chlorinated Phenols | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | 2.16 | UG/L | 29.1 | 41.3 | 32.9 | 35.1 | | | | | ======== | | ======== | | | Total Phenols | 2.16 | UG/L | 29.1 | 41.3 | 32.9 | 35.1 | | | | | PRI EFF | PRI EFF | PRI EFF | PRI EFF | |---|------|-------|-------------|-------------|-------------|-------------| | | | | 02-FEB-2010 | 04-MAY-2010 |
02-AUG-2010 | 05-0CT-2010 | | Analyte: | MDL | Units | P504522 | P515516 | P525082 | P533631 | | ======================================= | ==== | ===== | ======== | ======== | ======== | ======== | | 2-chlorophenol | 1.32 | UG/L | ND | ND | ND | ND | | 2,4-dichlorophenol | 1.01 | UG/L | ND | ND | ND | ND | | 4-chloro-3-methylphenol | 1.67 | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | 1.65 | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | 13.9 | 30.1 | 42.9 | 17.3 | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | ND | ND | ND | | | ==== | ===== | ======== | ======== | ======== | ======== | | 2-methylphenol | 2.15 | UG/L | ND | ND | ND | ND | | <pre>3-methylphenol(4-MP is unresolved)</pre> | | UG/L | NA | NA | NA | NA | | 4-methylphenol(3-MP is unresolved) | 2.11 | UG/L | 38.0 | 75.6 | 135.0 | 40.7 | | 2,4,5-trichlorophenol | 1.66 | UG/L | ND | ND | ND | ND | | | ==== | ===== | ======== | ======== | ======== | ======== | | Total Chlorinated Phenols | 1.67 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | 2.16 | UG/L | 13.9 | 30.1 | 42.9 | 17.3 | | | ==== | ===== | ======== | ======== | ======== | ======== | | Total Phenols | 2.16 | UG/L | 13.9 | 30.1 | 42.9 | 17.3 | | | | | SEC EFF | SEC EFF | SEC EFF | SEC EFF | |--|------|---------------|-------------|-------------|-------------|-------------| | | | | 02-FEB-2010 | 04-MAY-2010 | 02-AUG-2010 | 05-0CT-2010 | | Analyte: | MDL | Units | P504527 | P515521 | P525087 | P533636 | | | ==== | ===== | ======== | ======== | ======== | ======== | | 2-chlorophenol | 1.32 | UG/L | ND | ND | ND | ND | | 2,4-dichlorophenol | 1.01 | UG/L | ND | ND | ND | ND | | 4-chloro-3-methylphenol | 1.67 | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | 1.65 | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | ND | ND | ND | ND | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | ND | ND | ND | | 2-methylphenol | 2 15 | =====
UG/L | ND | ND | ND | ND | | 3-methylphenol(4-MP is unresolved) | 2.13 | UG/L | NA
NA | NA
NA | NA
NA | NA
NA | | 4-methylphenol(3-MP is unresolved) | 2 11 | , | ND. | ND. | ND. | ND. | | 2,4,5-trichlorophenol | | UG/L | ND. | ND
ND | ND
ND | ND
ND | | ====================================== | ==== | ===== | ======== | | | | | Total Chlorinated Phenols | 1.67 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | 2.16 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Phenols | 2.16 | =====
UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | | | RSL
02-FFB-2010 | RSL
04-MAY-2010 | RSL
03-AUG-2010 | RSL
05-0CT-2010 | |---|------|-------|--------------------|--------------------|--------------------|--------------------| | Analyte: | MDL | Units | P504541 | P515533 | P525101 | P533648 | | 2 ahlananhanal | 1 22 | ===== | ND | | | ND. | | 2-chlorophenol | | UG/L | ND | ND | ND | ND
ND | | 2,4-dichlorophenol | | UG/L | ND | ND | ND | | | 4-chloro-3-methylphenol | | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | 129 | 119 | 193 | 235 | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | | UG/L | ND | ND | ND | ND | | ======================================= | ==== | ===== | ========= | ========= | ========= | ========= | | 2-methylphenol | 2.15 | UG/L | ND | ND | ND | 41.8 | | <pre>3-methylphenol(4-MP is unresolved)</pre> | | UG/L | NA | NA | NA | NA | | 4-methylphenol(3-MP is unresolved) | 2.11 | UG/L | 286 | 141 | 359 | 293 | | 2,4,5-trichlorophenol | 1.66 | UG/L | ND | ND | ND | ND | | ======================================= | ==== | ===== | ======== | ======== | ======== | ======== | | Total Chlorinated Phenols | 1.67 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | 2.16 | UG/L | 129 | 119 | 193 | 235 | | | ==== | ===== | ======== | ======== | ======== | ======== | | Total Phenols | 2.16 | UG/L | 129 | 119 | 193 | 235 | | | | | REC WATER | REC WATER | REC WATER
02-AUG-2010 | REC WATER | |------------------------------------|------|-------|-----------|-----------|--------------------------|-----------| | Analyte: | MDL | Units | P504543 | P515535 | P525103 | P533650 | | | ==== | ===== | ======== | ======== | ======== | ======== | | 2-chlorophenol | 1.32 | UG/L | ND | ND | ND | ND | | 2,4-dichlorophenol | 1.01 | UG/L | ND | ND | ND | ND | | 4-chloro-3-methylphenol | 1.67 | UG/L | ND | ND | ND | ND | | 2,4,6-trichlorophenol | 1.65 | UG/L | ND | ND | ND | ND | | Pentachlorophenol | 1.12 | UG/L | ND | ND | ND | ND | | Phenol | 1.76 | UG/L | ND | ND | ND | ND | | 2-nitrophenol | 1.55 | UG/L | ND | ND | ND | ND | | 2,4-dimethylphenol | 2.01 | UG/L | ND | ND | ND | ND | | 2,4-dinitrophenol | 2.16 | UG/L | ND | ND | ND | ND | | 4-nitrophenol | 1.14 | UG/L | ND | ND | ND | ND | | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | ND | ND | ND | | | ==== | ===== | | | | | | 2-methylphenol | 2.15 | UG/L | ND | ND | ND | ND | | 3-methylphenol(4-MP is unresolved) | | UG/L | NA | NA | NA | NA | | 4-methylphenol(3-MP is unresolved) | | | ND | ND | ND | ND | | 2,4,5-trichlorophenol | 1.66 | UG/L | ND | ND | ND | ND | | Total Chlorinated Phenols | 1 67 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | | UG/L | | 0.0 | 0.0 | 0.0 | | iotal Mon-Chitotinated Filehols | 2.16 | 0G/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Phenols | 2.16 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Analyte | | Units | SB_INF_02
02-FEB-2010
P504510 | SB_INF_02
04-MAY-2010
P515504 | SB_INF_02
03-AUG-2010
P525070 | SB_INF_02
05-OCT-2010
P533619 | |--|----------|---------------|-------------------------------------|-------------------------------------|---|-------------------------------------| | Acrolein | | =====
UG/L | ND | ND | ND | ND | | Acrylonitrile | .7 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Benzene | .4 | UG/L | ND. | ND | ND. | ND | | Bromodichloromethane | .5 | UG/L | ND | ND | ND | ND | | Bromoform | .5 | UG/L | ND | ND | ND | ND | | Bromomethane | .7 | UG/L | ND | ND | ND | ND | | Carbon tetrachloride | .4 | UG/L | ND | ND | ND | ND | | Chlorobenzene | .4 | UG/L | ND | ND | ND | ND | | Chloroethane | .9 | UG/L | ND | ND | ND | ND | | 2-chloroethylvinyl ether | | UG/L | ND | ND | ND | ND | | Chloroform | .2 | UG/L | 1.8 | 2.2 | 3.2 | 1.7 | | Chloromethane | .5 | UG/L | ND | ND | ND | ND | | Dibromochloromethane | .6
.4 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | <pre>1,2-dichlorobenzene 1,3-dichlorobenzene</pre> | .5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,4-dichlorobenzene | .4 | UG/L | 0.6 | 0.8 | 1.1 | 0.6 | | Dichlorodifluoromethane | | UG/L | ND. | ND | ND. | ND | | 1,1-dichloroethane | .4 | UG/L | ND | ND | ND | ND | | 1,2-dichloroethane | .5 | UG/L | ND | ND | ND | ND | | 1,1-dichloroethene | .4 | UG/L | ND | ND | ND | ND | | trans-1,2-dichloroethene | .6 | UG/L | ND | ND | ND | ND | | 1,2-dichloropropane | .3 | UG/L | ND | ND | ND | ND | | cis-1,3-dichloropropene | .3 | UG/L | ND | ND | ND | ND | | trans-1,3-dichloropropene | .5 | UG/L | ND | ND | ND | ND | | Ethylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methylene chloride | .3 | UG/L | 1.4 | 1.8 | 2.2 | 10.2 | | 1,1,2,2-tetrachloroethane | .5 | UG/L | ND | ND | ND | ND | | Tetrachloroethene | | UG/L | ND | ND | ND | ND | | Toluene | .4 | UG/L | 0.5 | 0.6 | 0.8 | 0.8 | | 1,1,1-trichloroethane | .4
.5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,1,2-trichloroethane Trichloroethene | .7 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Trichlorofluoromethane | .3 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Vinyl chloride | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | ======================================= | | - | | | | | | Halomethane Purgeable Cmpnds | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | UG/L | 3.2 | 4.0 | 5.4 | 11.9 | | | | | | | ======================================= | | | Purgeable Compounds | | UG/L | 4.3 | 5.4 | 7.3 | 13.3 | | Additional Analytes Determin | | ===== | | | | | | Acetone | 4.5 | UG/L | 120 | 199 | 173 | 168 | | Allyl chloride | .6 | UG/L | ND | ND | ND | ND | | Benzyl chloride | | UG/L | ND | ND | ND | ND | | 1,2-dibromoethane | .3 | • | ND | ND | ND | ND | | 2-butanone | | UG/L | ND | ND | 9.8 | 12.8 | | Carbon disulfide | .6 | UG/L | 1.6 | 4.6 | 1.3 | 1.9 | | 1,2,4-trichlorobenzene | .7 | UG/L | ND | ND | ND | ND | | Chloroprene | .4 | UG/L | ND ND | ND ND | ND ND | ND
ND | | Isopropylbenzene
Methyl Iodide | .3
.6 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Methyl methacrylate | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 4-methyl-2-pentanone | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | meta,para xylenes | .6 | UG/L | ND | ND | ND. | ND | | Methyl tert-butyl ether | | UG/L | ND | ND | ND | ND | | 2-nitropropane | | UG/L | ND | ND | ND | ND | | ortho-xylene | .4 | UG/L | ND | ND | ND | ND | | Styrene | .3 | UG/L | ND | ND | ND | ND | | ND= not detected | | | | |
 | | | | | CD OUTEALL OA | CD OUTENLA OF | CD OUTEAU 01 | CD OUTEAU OA | |---|----------|--------------|------------------------------|------------------------------|------------------------------|------------------------------| | | | | SB_OUTFALL_01
02-FEB-2010 | SB_OUTFALL_01
04-MAY-2010 | SB_OUTFALL_01
03-AUG-2010 | SB_OUTFALL_01
05-OCT-2010 | | Analyte | MDL | Units | P504515 | P515509 | P525075 | P533624 | | , | | ===== | | | | | | Acrolein | | UG/L | ND | ND | ND | ND | | Acrylonitrile | .7 | UG/L | ND | ND | ND | ND | | Benzene | .4 | UG/L | ND | ND | ND | ND | | Bromodichloromethane | .5 | UG/L | ND | ND | ND | ND | | Bromoform | .5 | UG/L | ND | ND | ND | ND | | Bromomethane
Carbon tetrachloride | .7 | UG/L | ND | ND | ND | ND | | Chlorobenzene | .4
.4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Chloroethane | .9 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2-chloroethylvinyl ether | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Chloroform | .2 | UG/L | 0.5 | 0.6 | 1.0 | 0.5 | | Chloromethane | .5 | UG/L | ND. | ND | ND. | ND | | Dibromochloromethane | .6 | UG/L | ND. | ND. | ND. | ND
ND | | 1,2-dichlorobenzene | .4 | UG/L | ND | ND | ND | ND | | 1,3-dichlorobenzene | .5 | UG/L | ND | ND | ND | ND | | 1,4-dichlorobenzene | .4 | UG/L | ND | ND | ND | ND | | Dichlorodifluoromethane | .66 | UG/L | ND | ND | ND | ND | | 1,1-dichloroethane | .4 | UG/L | ND | ND | ND | ND | | 1,2-dichloroethane | .5 | UG/L | ND | ND | ND | ND | | 1,1-dichloroethene | .4 | UG/L | ND | ND | ND | ND | | trans-1,2-dichloroethene | .6 | UG/L | ND | ND | ND | ND | | 1,2-dichloropropane | .3 | UG/L | ND | ND | ND | ND | | cis-1,3-dichloropropene | .3 | UG/L | ND | ND | ND | ND | | trans-1,3-dichloropropene | .5 | UG/L | ND | ND | ND | ND | | Ethylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methylene chloride | .3 | UG/L | 2.1 | 0.5 | 0.8 | 2.7 | | 1,1,2,2-tetrachloroethane | .5 | UG/L | ND | ND | ND | ND | | Tetrachloroethene
Toluene | .4 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,1,1-trichloroethane | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,1,2-trichloroethane | .5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Trichloroethene | .7 | UG/L | ND
ND | ND | ND | ND
ND | | Trichlorofluoromethane | .3 | UG/L | ND. | ND | ND. | ND | | Vinyl chloride | .4 | UG/L | ND. | ND. | ND | ND | | ======================================= | === | ===== | =========== | | | ========= | | Halomethane Purgeable Cmpnds | .7 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | Total Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | UG/L | 2.6 | 1.1 | 1.8 | 3.2 | | ======================================= | | | ========== | | | | | Purgeable Compounds | 1.3 | UG/L | 2.6 | 1.1 | 1.8 | 3.2 | | Additional Analytic Determin | | | | | | | | Additional Analytes Determine | | | =========== | ========== | | | | Acetone | | UG/L | ND | ND | ND | ND | | Allyl chloride | | UG/L | ND | ND | ND | ND | | Benzyl chloride | | UG/L | ND | ND | ND | ND | | 1,2-dibromoethane | | UG/L | ND | ND | ND | ND | | 2-butanone | 6.3 | UG/L | ND | ND | ND | ND | | Carbon disulfide | .6 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | .7 | UG/L | ND | ND | ND | ND | | Chloroprene | .4 | UG/L | ND | ND | ND | ND | | Isopropylbenzene | | UG/L | ND | ND | ND | ND | | Methyl Iodide | | UG/L | ND | ND | ND | ND | | Methyl methacrylate | | UG/L | ND | ND | ND | ND | | 4-methyl-2-pentanone | | UG/L | ND | ND | ND | ND | | meta,para xylenes | .6 | UG/L | ND | ND | ND | ND | | Methyl tert-butyl ether | | UG/L | ND ND | ND
ND | ND ND | ND
ND | | 2-nitropropane | 12
.4 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | ortho-xylene
Styrene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Jey, ene | | 53, L | ND | ND | ND | IND | | ND d. d. d. d. d. | | | | | | | | | | | CD IID COMD FEE | CD TTD COMP FFF | CD TTD COMP FEE | CD TTD COMD FFF | |--|----------|--------------|---|-----------------|--------------------------------|-----------------| | | | | SB_11P_COMB_EFF
02-FEB-2010 | 04-MAY-2010 | SB_ITP_COMB_EFF
03-AUG-2010 | 05-0CT-2010 | | Analyte | MDL | Units | P504520 | P515514 | P525080 | P533629 | | ======================================= | | | ======================================= | ========== | | | | Acrolein | | UG/L | ND | ND | ND | ND | | Acrylonitrile | .7 | UG/L | ND | ND | ND | ND | | Benzene | .4 | UG/L | ND | ND | ND | ND | | Bromodichloromethane | .5 | UG/L | 1.4 | ND | ND | ND | | Bromoform
Bromomethane | .5
.7 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Carbon tetrachloride | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Chlorobenzene | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Chloroethane | .9 | UG/L | ND ND | ND. | ND | ND
ND | | 2-chloroethylvinyl ether | | UG/L | ND | ND | ND | ND | | Chloroform | .2 | UG/L | 5.8 | 12.9 | 8.5 | 9.6 | | Chloromethane | .5 | UG/L | ND | ND | ND | ND | | Dibromochloromethane | .6 | UG/L | 1.5 | ND | ND | ND | | 1,2-dichlorobenzene | .4 | UG/L | ND | ND | ND | ND | | 1,3-dichlorobenzene | .5 | UG/L | ND | ND | ND | ND | | 1,4-dichlorobenzene | .4 | UG/L | 2.2 | 3.7 | 2.7 | 3.5 | | Dichlorodifluoromethane | | UG/L | ND | ND | ND | ND | | 1,1-dichloroethane | .4 | UG/L | ND | ND | ND | ND | | <pre>1,2-dichloroethane 1,1-dichloroethene</pre> | .5
.4 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | trans-1,2-dichloroethene | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2-dichloropropane | .3 | UG/L | ND
ND | ND
ND | ND | ND
ND | | cis-1,3-dichloropropene | .3 | UG/L | ND. | ND. | ND. | ND | | trans-1,3-dichloropropene | | UG/L | ND | ND | ND | ND | | Ethylbenzene | | UG/L | 0.7 | 1.5 | 0.4 | 1.1 | | Methylene chloride | .3 | UG/L | 2.7 | 5.8 | 3.0 | 3.3 | | 1,1,2,2-tetrachloroethane | .5 | UG/L | ND | ND | ND | ND | | Tetrachloroethene | 1.1 | UG/L | ND | ND | ND | ND | | Toluene | .4 | UG/L | 5.4 | 17.9 | 8.9 | 32.8 | | 1,1,1-trichloroethane | .4 | UG/L | ND | ND | ND | ND | | 1,1,2-trichloroethane | .5 | UG/L | ND | ND | ND | ND | | Trichloroethene | .7 | UG/L | ND | ND | ND | 0.8 | | Trichlorofluoromethane | .3
.4 | UG/L | ND
ND | ND | ND
ND | ND
ND | | Vinyl chloride | | UG/L | ND | ND | | UN | | Halomethane Purgeable Cmpnds | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | ========== | | | Total Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | UG/L | 8.5 | 18.7 | 11.5 | 12.9 | | ======================================= | | - | =========== | | | | | Purgeable Compounds | 1.3 | UG/L | 19.7 | 41.8 | 23.5 | 51.1 | | Additional Analytes Determin | ed | | | | | | | ======================================= | | ===== | ========== | ========== | ========== | ======== | | Acetone | | UG/L | 368 | 486 | 484 | 636 | | Allyl chloride | .6 | UG/L | ND | ND | ND | ND | | Benzyl chloride | 1.1 | UG/L | ND | ND | 4.3 | 1.8 | | 1,2-dibromoethane | .3 | UG/L | ND | ND | ND | ND | | 2-butanone | | UG/L | 15.3 | 9.5 | 6.8 | 14.5 | | Carbon disulfide | | UG/L | 1.3 | 2.7 | 1.5 | 4.0 | | 1,2,4-trichlorobenzene | .7 | UG/L | ND | ND | ND | ND | | Chloroprene | | UG/L | ND | ND | ND
1 2 | ND | | Isopropylbenzene
Methyl Iodide | | UG/L | ND ND | 0.6 | 1.3 | 0.9 | | | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Methyl methacrylate 4-methyl-2-pentanone | | UG/L | ND
ND | ND
ND | ND
ND | 2.9 | | meta,para xylenes | .6 | UG/L | 2.9 | 6.0 | 1.4 | 4.5 | | Methyl tert-butyl ether | | UG/L | ND | ND | ND | ND | | 2-nitropropane | | UG/L | ND | ND | ND | ND | | ortho-xylene | .4 | UG/L | 1.9 | 4.0 | 1.9 | 7.0 | | Styrene | .3 | UG/L | ND | ND | ND | ND | | | | | | | | | | Analyte | | Units | SB_PRIEFF_10
02-FEB-2010
P504525 | SB_PRIEFF_10
04-MAY-2010
P515519 | SB_PRIEFF_10
03-AUG-2010
P525085 | SB_PRIEFF_10
05-OCT-2010
P533634 | |---|----------|---------------|--|--|---|--| | Acrolein | | =====
UG/L | ND | ND | ND | ND | | Acrolein
Acrylonitrile | .7 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Benzene | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Bromodichloromethane | .5 | UG/L | ND. | ND | ND. | ND | | Bromoform | .5 | UG/L | ND | ND | ND | ND | | Bromomethane | .7 | UG/L | ND | ND | ND | ND | | Carbon tetrachloride | .4 | UG/L | ND | ND | ND | ND | | Chlorobenzene | .4 | UG/L | ND | ND | ND | ND | | Chloroethane | .9 | UG/L | ND | ND | ND | ND | | 2-chloroethylvinyl ether | | UG/L | ND | ND | ND | ND | | Chloroform | .2 | UG/L | 1.2 | 1.8 | 1.7 | 1.5 | | Chloromethane | .5 | UG/L | ND | ND | ND | ND | | Dibromochloromethane | .6 | UG/L | ND | ND | ND | ND | | 1,2-dichlorobenzene | .4 | UG/L | ND | ND | ND | ND | | 1,3-dichlorobenzene | .5
.4 | UG/L
UG/L | ND
0.4 | ND
ND | ND
0.8 | ND
<0.4 | | 1,4-dichlorobenzene Dichlorodifluoromethane | | UG/L | ND | ND
ND | ND | ND | | 1,1-dichloroethane | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2-dichloroethane | .5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,1-dichloroethene | .4 | UG/L | ND ND | ND | ND ND | ND | | trans-1,2-dichloroethene | .6 | UG/L | ND. | ND. | ND. | ND | | 1,2-dichloropropane | .3 | UG/L | ND | ND | ND | ND | | cis-1,3-dichloropropene | .3 | UG/L | ND | ND | ND | ND | | trans-1,3-dichloropropene | .5 | UG/L | ND | ND | ND | ND | | Ethylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methylene chloride | .3 | UG/L | 0.8 | 1.5 | 5.0 | 224 | | 1,1,2,2-tetrachloroethane | .5 | UG/L | ND | ND | ND | ND | | Tetrachloroethene | 1.1 | UG/L | ND |
ND | ND | ND | | Toluene | .4 | UG/L | 1.3 | 0.6 | 0.7 | 0.6 | | 1,1,1-trichloroethane | .4 | UG/L | ND | ND | ND | ND | | 1,1,2-trichloroethane | .5 | UG/L | ND | ND | ND | ND | | Trichloroethene | .7 | UG/L | ND | ND | ND | ND | | Trichlorofluoromethane | .3
.4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Vinyl chloride | | UG/L | | | ND
=========== | | | Halomethane Purgeable Cmpnds | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | ======================================= | === | ===== | ========== | | ========== | | | Total Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | =====
UG/L | 2.0 | 3.3 | 6.7 | 226 | | | === | - | =========== | ========= | ======================================= | ========== | | Purgeable Compounds | 1.3 | UG/L | 3.7 | 3.9 | 8.2 | 226 | | Additional Analytes Determin | | | | | | | | Acetone | | =====
UG/L | 230 | 216 | 199 | 230 | | Allyl chloride | | UG/L | ND | ND | ND | ND | | Benzyl chloride | | UG/L | ND ND | ND | ND ND | ND | | 1,2-dibromoethane | .3 | | ND | ND | ND | ND | | 2-butanone | | UG/L | ND | ND | 12.0 | 7.4 | | Carbon disulfide | .6 | UG/L | 2.2 | 2.5 | 2.3 | 5.9 | | 1,2,4-trichlorobenzene | .7 | UG/L | ND | ND | ND | ND | | Chloroprene | .4 | UG/L | ND | ND | ND | ND | | Isopropylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methyl Iodide | .6 | UG/L | ND | ND | ND | ND | | Methyl methacrylate | | UG/L | ND | ND | ND | ND | | 4-methyl-2-pentanone | | UG/L | ND | ND | ND | ND | | meta,para xylenes | .6 | UG/L | ND | ND | ND | ND | | Methyl tert-butyl ether | | UG/L | ND | ND | ND | ND | | 2-nitropropane | | UG/L | ND ND | ND ND | ND ND | ND
ND | | ortho-xylene
Styrene | .4 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | ND= not detected | | JU, E | NU | ND | NU | ND | | | | | | | | | | Analyte | | Units | SB_SEC_EFF_20
02-FEB-2010
P504530 | SB_SEC_EFF_20
04-MAY-2010
P515524 | P525090 | SB_SEC_EFF_20
05-OCT-2010
P533639 | |---|----------|---------------|---|---|-------------|---| | Acrolein | | =====
UG/L | ND | ND | ND | ND | | Acrylonitrile | .7 | UG/L | ND ND | ND | ND. | ND
ND | | Benzene | .4 | UG/L | ND | ND | ND | ND | | Bromodichloromethane | .5 | UG/L | ND | ND | ND | ND | | Bromoform | .5 | UG/L | ND | ND | ND | ND | | Bromomethane | .7 | UG/L | ND | ND | ND | ND | | Carbon tetrachloride | .4 | UG/L | ND | ND | ND | ND | | Chlorobenzene | .4 | UG/L | ND | ND | ND | ND | | Chloroethane | .9 | UG/L | ND | ND | ND | ND | | 2-chloroethylvinyl ether | | UG/L | ND | ND | ND | ND | | Chloroform | .2 | UG/L | 0.5 | 0.6 | 0.6 | ND | | Chloromethane Dibromochloromethane | .5
.6 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2-dichlorobenzene | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,3-dichlorobenzene | .5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 1,4-dichlorobenzene | .4 | UG/L | ND ND | ND | ND ND | ND | | Dichlorodifluoromethane | | UG/L | ND. | ND. | ND. | ND | | 1,1-dichloroethane | .4 | UG/L | ND | ND | ND | ND | | 1,2-dichloroethane | .5 | UG/L | ND | ND | ND | ND | | 1,1-dichloroethene | .4 | UG/L | ND | ND | ND | ND | | trans-1,2-dichloroethene | .6 | UG/L | ND | ND | ND | ND | | 1,2-dichloropropane | .3 | UG/L | ND | ND | ND | ND | | cis-1,3-dichloropropene | .3 | UG/L | ND | ND | ND | ND | | trans-1,3-dichloropropene | .5 | UG/L | ND | ND | ND | ND | | Ethylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methylene chloride | .3 | UG/L | 0.5 | 0.7 | 0.3 | 4.0 | | 1,1,2,2-tetrachloroethane | .5 | UG/L | ND | ND | ND | ND | | Tetrachloroethene | | UG/L | ND | ND | ND | ND | | Toluene | .4 | UG/L | ND | ND | ND | ND | | 1,1,1-trichloroethane | .4
.5 | UG/L | ND
ND | ND
ND | ND | ND | | 1,1,2-trichloroethane Trichloroethene | .7 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Trichlorofluoromethane | .3 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Vinyl chloride | .4 | UG/L | ND
ND | ND
ND | ND | ND
ND | | ======================================= | | | | | =========== | | | Halomethane Purgeable Cmpnds | .7 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | =====
UG/L | 1.0 | 1.3 | 0.9 | 4.0 | | | === | ===== | | | ========== | | | Purgeable Compounds | 1.3 | UG/L | 1.0 | 1.3 | 0.9 | 4.0 | | Additional Analytes Determine | | ===== | ========= | ========= | ========== | ========== | | Acetone | | UG/L | ND | ND | ND | ND | | Allyl chloride | .6 | UG/L | ND | ND | ND | ND | | Benzyl chloride | 1.1 | UG/L | ND | ND | ND | ND | | 1,2-dibromoethane | .3 | UG/L | ND | ND | ND | ND | | 2-butanone | | UG/L | ND | ND | ND | ND | | Carbon disulfide | .6 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene | .7 | UG/L | ND | ND | ND | ND | | Chloroprene | .4 | UG/L | ND | ND | ND | ND | | Isopropylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methyl Iodide
Methyl methacrylate | .6
.8 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 4-methyl-2-pentanone | | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | meta,para xylenes | .6 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Methyl tert-butyl ether | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2-nitropropane | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | ortho-xylene | | UG/L | ND | ND | ND | ND | | Styrene | .3 | UG/L | ND | ND | ND | ND | | ND= not detected | | | | | | | | Acrolein 1,3 US/L ND | Analyte | | Units | 02-FEB-2010
P504546 | 04-MAY-2010
P515538 | P525106 | 05-0CT-2010
P533653 | |--|---------------------------------------|-----|----------------|------------------------|------------------------|------------|------------------------| | Acrylonitrile | | | | | | | | | Benzene | | | | | | | | | Brossomethane | | .4 | | | | | | | Promomethane | Bromodichloromethane | .5 | UG/L | ND | ND | ND | 4.9 | | Carbon tetrachloride | Bromoform | .5 | UG/L | ND | ND | ND | ND | | Chlorochanee | Bromomethane | .7 | UG/L | ND | ND | ND | ND | | Chloroethane | | | | | | | | | 2-chloroethylvinyl ether | | | | | | | | | Chloroform | | | | | | | | | Chloromethane | | | | | | | | | Dibromochloromethane | | | | | | | | | 1,2-dichlorobenzene | | | | | | | | | 1,3-dichlorobenzene | | | | | | | | | 1,4-dichlorobenzene | • | | | | | | | | Dicknordifluoromethane 4. 0G/L ND <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | • | | | | | | | | 1,1-dichloroethane | - | | | | | | | | 1,1-dichloroethene | | | | ND | ND | ND | ND | | Trans-1,2-dischloroethene | 1,2-dichloroethane | .5 | UG/L | ND | ND | ND | ND | | 1,2-dichloropropane | 1,1-dichloroethene | .4 | UG/L | ND | ND | ND | ND | | cis-1,3-dichioropropene .3 UG/L ND | trans-1,2-dichloroethene | .6 | UG/L | ND | ND | ND | ND | | trans-1,3-dichloropropene .5 UG/L ND ND ND ND Ethylbenzene .3 UG/L ND | | .3 | UG/L | ND | ND | ND | ND | | Ethylbenzene | | | | | | ND | | | Methylene chloride | , , , | | | | | | | | 1,1,2,2-tetrachloroethane | | | | | | | | | Tetrachloroethene | , | | | | | | | | Toluene | | | | | | | | | 1,1,1-trichloroethane | | | | | | | | | 1,1,2-trichloroethane | | | | | | | | | Trichloroethene | | | | | | | | | Trichlorofluoromethane | | | | | | | | | Vinyl chloride .4 UG/L ND ND ND ND Halomethane Purgeable Cmpnds .7 UG/L 0.0 0.0 0.0 0.0 0.0 Total Dichlorobenzenes .5 UG/L 0.0 0.0 0.0 0.0 0.0 Embedding .5 UG/L 0.0 0.0 0.0 0.0 0.0 Embedding .5 UG/L 2.2 2.2 5.3 365 Embedding .5 UG/L 2.2 2.2 5.3 365 Embedding .5 UG/L 2.2 2.2 5.3 365 Embedding .5 UG/L 2.2 2.2 5.3 372 Additional Analytes Determined <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | Halomethane Purgeable Cmpnds | | | | | | | | | Total Dichlorobenzenes S UG/L 0.0 0.0 0.0 0.0 0.0 | | === | ===== | ========== | ========== | ========== | ========= | | Total Dichlorobenzenes | Halomethane Purgeable Cmpnds | .7 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes .5 UG/L 2.2 2.2 5.3 365 | | | | | | | | | Total Chloromethanes .5 | | | | | | | | | Purgeable Compounds 1.3 UG/L 2.2 2.2 5.3 372 Additional Analytes Determined | | | | | | | | | Purgeable Compounds 1.3 UG/L 2.2 2.2 5.3 372 Additional Analytes Determined ================================== | | | , | | | | | | Additional Analytes Determined | | | | | | | | | Acetone | r ar geable compounds | 1.5 | 00/ L | 2.2 | 2.2 | 5.5 | 372 | | Acetone 4.5 UG/L ND ND 4.8 ND Allyl chloride .6 UG/L ND ND ND ND ND Benzyl chloride 1.1 UG/L ND ND ND ND ND 1,2-dibromoethane .3 UG/L ND ND ND ND ND 2-butanone 6.3 UG/L ND ND ND ND ND ND Carbon disulfide .6 UG/L
ND N | | | | | | | | | Allyl chloride | | | | | | | | | Benzyl chloride 1.1 UG/L ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | 1,2-dibromoethane | • | | | | | | | | Carbon disulfide .6 UG/L ND | | .3 | UG/L | ND | ND | ND | ND | | 1,2,4-trichlorobenzene .7 UG/L ND | 2-butanone | 6.3 | UG/L | ND | ND | ND | ND | | Chloroprene .4 UG/L ND | Carbon disulfide | .6 | UG/L | ND | ND | ND | ND | | Isopropylbenzene .3 UG/L ND | 1,2,4-trichlorobenzene | | | ND | ND | ND | ND | | Methyl Iodide .6 UG/L ND | | | | | | | | | Methyl methacrylate .8 UG/L ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | 4-methyl-2-pentanone 1.3 UG/L ND ND ND ND ND meta, para xylenes .6 UG/L ND ND ND ND ND Methyl tert-butyl ether .4 UG/L ND ND ND ND ND 2-nitropropane 12 UG/L ND ND ND ND ND ortho-xylene .4 UG/L ND ND ND ND ND Styrene .3 UG/L ND ND ND ND ND | , | | | | | | | | meta,para xylenes.6UG/LNDNDNDNDMethyl tert-butyl ether.4UG/LNDNDNDND2-nitropropane12UG/LNDNDNDNDortho-xylene.4UG/LNDNDNDNDStyrene.3UG/LNDNDNDND | | | | | | | | | Methyl tert-butyl ether .4 UG/L ND ND ND ND ND 2-nitropropane 12 UG/L ND ND ND ND ND ortho-xylene .4 UG/L ND ND ND ND ND Styrene .3 UG/L ND ND ND ND ND | | | | | | | | | 2-nitropropane 12 UG/L ND ND ND ND ND ortho-xylene .4 UG/L ND ND ND ND ND ND Styrene .3 UG/L ND ND ND ND ND ND | · · · · · · · · · · · · · · · · · · · | | | | | | | | ortho-xylene .4 UG/L ND ND ND ND ND Styrene .3 UG/L ND ND ND ND ND ND | | | | | | | | | Styrene .3 UG/L ND ND ND ND ND | | | | | | | | | | - | | | | | | | | | • | | , - | | | , and | 110 | ### Annual 2010 | | | | SB_RSL_10_B | SB_RSL_10_B | SB_RSL_10_B | SB_RSL_10_B | |---|----------|--------------|---|-------------|-------------|---| | | | | 02-FEB-2010^ | | 03-AUG-2010 | 05-0CT-2010 | | Analyte | MDL | Units | P504541 | P515533 | P525101 | P533648 | | | | | ======================================= | | | ======================================= | | Acrolein | | UG/L | ND | ND | ND | ND | | Acrylonitrile | .7 | UG/L | ND | ND | ND | ND | | Benzene | .4 | UG/L | ND | ND | ND | ND | | Bromodichloromethane | .5 | UG/L | ND | ND | ND | ND | | Bromoform | .5 | UG/L | ND | ND | ND | ND | | Bromomethane
Carbon tetrachloride | .7
.4 | UG/L
UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Chlorobenzene | .4 | UG/L | ND
ND | ND
ND | ND ND | ND
ND | | Chloroethane | .9 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | 2-chloroethylvinyl ether | | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Chloroform | .2 | UG/L | 2.4 | 2.8 | 3.3 | 2.6 | | Chloromethane | .5 | UG/L | ND | ND | ND | ND | | Dibromochloromethane | .6 | UG/L | ND | ND | ND | ND | | 1,2-dichlorobenzene | .4 | UG/L | 0.9 | 0.4 | 0.5 | ND | | 1,3-dichlorobenzene | .5 | UG/L | ND | <0.5 | ND | ND | | 1,4-dichlorobenzene | .4 | UG/L | 2.0 | 1.9 | 3.4 | 2.1 | | Dichlorodifluoromethane | .66 | UG/L | ND | ND | ND | ND | | 1,1-dichloroethane | .4 | UG/L | ND | ND | ND | ND | | 1,2-dichloroethane | .5 | UG/L | ND | ND | ND | ND | | 1,1-dichloroethene | .4 | UG/L | ND | ND | ND | ND | | trans-1,2-dichloroethene | .6 | UG/L | ND | ND | ND | ND | | 1,2-dichloropropane | .3 | UG/L | ND | ND | ND | ND | | cis-1,3-dichloropropene | .3 | UG/L | ND | ND | ND | ND | | trans-1,3-dichloropropene | .5 | UG/L | ND | ND | ND | ND | | Ethylbenzene | .3 | UG/L | ND | ND | ND | ND | | Methylene chloride | .3 | UG/L | 13.5 | 2.2 | 21.8 | 109 | | 1,1,2,2-tetrachloroethane | .5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Tetrachloroethene
Toluene | .4 | UG/L
UG/L | 5.0 | ND
1.9 | 5.9 | 4.2 | | 1,1,1-trichloroethane | .4 | UG/L | ND | ND | ND | 4.2
ND | | 1,1,2-trichloroethane | .5 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Trichloroethene | .7 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Trichlorofluoromethane | .3 | UG/L | ND | ND | ND | ND | | Vinyl chloride | .4 | UG/L | ND | ND | ND. | ND | | ======================================= | | | ======================================= | | | | | Halomethane Purgeable Cmpnds | .7 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | | | ========== | ========= | ========== | ========= | | Total Dichlorobenzenes | .5 | UG/L | 0.9 | 0.4 | 0.5 | 0.0 | | | === | ===== | ========== | ========== | | ========== | | Total Chloromethanes | .5 | UG/L | 15.9 | 5.0 | 25.1 | 112 | | | | | | | | | | Purgeable Compounds | | UG/L | 23.8 | 9.2 | 34.9 | 118 | | | | | | | | | | Acetone | | UG/L | 214 | 143 | 257 | 114* | | Allyl chloride | .6 | UG/L | ND | ND | ND | ND | | Benzyl chloride | | UG/L | ND | ND | ND | ND | | 1,2-dibromoethane
2-butanone | .3 | UG/L
UG/L | ND
4E 9 | ND
o c | ND
7.5 | ND
ND | | Carbon disulfide | .6 | UG/L | 45.8
3.7 | 8.6
3.4 | 2.6 | 2.7 | | 1,2,4-trichlorobenzene | .7 | UG/L | ND | ND | ND | ND | | Chloroprene | .4 | UG/L | ND
ND | ND
ND | ND
ND | ND
ND | | Isopropylbenzene | .3 | UG/L | 0.4 | 0.5 | ND
ND | 0.5 | | Methyl Iodide | .6 | UG/L | ND | ND | ND | ND | | Methyl methacrylate | .8 | UG/L | ND | ND | ND | ND | | 4-methyl-2-pentanone | | UG/L | ND | ND | ND | ND | | meta,para xylenes | .6 | UG/L | ND | ND | 0.7 | ND | | Methyl tert-butyl ether | .4 | UG/L | ND | ND | ND | ND | | 2-nitropropane | 12 | UG/L | ND | ND | ND | ND | | ortho-xylene | .4 | UG/L | ND | ND | ND | ND | | Styrene | .3 | UG/L | ND | ND | 0.3 | ND | | | | | | | | | ^{*=}The method blanks results for Acetone were above the 4.5 UG/L MDL. ^ Surrogates for this sample were outside of laboratory QC standards, values not included in averages. ### SOUTH BAY WATER RECLAMATION PLANT Tributyl Tin Analysis ### Annual 2010 | Analyte | | Units | INFLUENT
P504507
02-FEB-2010 | | INFLUENT
P525067
02-AUG-2010 | INFLUENT
P533616
05-OCT-2010 | | | EFFLUENT
P525072
03-AUG-2010 | |--|----------|--------------|------------------------------------|----------------------|------------------------------------|------------------------------------|----------|----------|------------------------------------| | Dibutyltin | 7 | UG/L | ND | Monobutyltin | 16 | UG/L | ND | Tributyltin | 2 | UG/L | ND | | | | EFFLUENT | COMB EFF | COMB EFF | COMB EFF | COMB EFF | PRI EFF | PRI EFF | | | | | P533621 | P504517 | P515511 | P525077 | P533626 | P504522 | P515516 | | Analyte | | Units | | | 04-MAY-2010 | | | | | | ====================================== | | | | | | | | | | | Dibutyltin | 7 | UG/L | ND | Monobutyltin
Tributyltin | | UG/L
UG/L | ND
ND | | | | | | | | | | | | | | | PRI EFF | PRI EFF | SEC EFF | SEC EFF | SEC EFF | SEC EFF | REC WATER | | | | | P525082 | P533631 | P504527 | P515521 | P525087 | P533636 | P504543 | | Analyte | | Units | | | 02-FEB-2010 | | | | | | Dibutyltin | ===
7 | ====
UG/L | ND | Monobutyltin | | UG/L | ND | Tributyĺtin | | UG/L | ND | | | | REC WATER
P515535 | REC WATER
P525103 | REC WATER
P533650 | | | | | | Analyte | MDL | Units | 04-MAY-2010 | 02-AUG-2010 | 05-0CT-2010 | | | | | | | | | | ======== | | | | | | | Dibutyltin | 7 | UG/L | ND | ND | ND | | | | | | Monobutyltin | | UG/L | ND | ND | ND | | | | | | Tributyltin | 2 | UG/L | ND | ND | ND | | | | | ### Annual 2010 | | | | | INFLUENT | INFLUENT
TCDD | EFFLUENT | EFFLUENT
TCDD | |---|---|--|--|--|--|---|---| | Analytes | | Units | Equiv. | 02-FEB-2010
P504507 | 02-FEB-2010
P504507 | 02-FEB-2010
P504512 | 02-FEB-2010
P504512 | | 2,3,7,8-tetra CDD | | PG/L | 1.000 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDD | | PG/L | 0.500 | ND | ND | ND | ND | | 1,2,3,4,7,8_hexa_CDD | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDD | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND | ND | ND | ND | | octa CDD | | PG/L | 0.001 | ND | ND | ND | ND | | 2,3,7,8-tetra CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | ND | ND | ND | | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.050 | ND | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | 148 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | 90 | PG/L | 0.010 | ND | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | 166 | PG/L | 0.010 | ND | ND | ND | ND | | octa CDF | 222 | PG/L | 0.001 | ND | ND | ND | ND | | | | | | | | | | | | | | | INFLUENT
04-MAY-2010 | INFLUENT
TCDD
04-MAY-2010 | EFFLUENT
04-MAY-2010 | EFFLUENT
TCDD
04-MAY-2010 | | Analytes | | Units | Equiv. | 04-MAY-2010
P515501 | TCDD
04-MAY-2010
P515501 | 04-MAY-2010
P515506 | TCDD
04-MAY-2010
P515506 | | | === | ======= | ====== | 04-MAY-2010
P515501 | TCDD
04-MAY-2010
P515501 | 04-MAY-2010
P515506 |
TCDD
04-MAY-2010
P515506 | | 2,3,7,8-tetra CDD | ===
125 | PG/L | 1.000 | 04-MAY-2010
P515501 | TCDD
04-MAY-2010
P515501 | 04-MAY-2010
P515506 | TCDD
04-MAY-2010
P515506 | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD | ===
125
123 | ======= | ====== | 04-MAY-2010
P515501
======== | TCDD
04-MAY-2010
P515501
====== | 04-MAY-2010
P515506
====== | TCDD
04-MAY-2010
P515506
====== | | 2,3,7,8-tetra CDD | ===
125
123 | PG/L
PG/L | 1.000
0.500 | 04-MAY-2010
P515501
======= ND
ND | TCDD
04-MAY-2010
P515501
ND
ND | 04-MAY-2010
P515506
======
ND
ND | TCDD
04-MAY-2010
P515506
======
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD | ===
125
123
113
98 | PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100 | 04-MAY-2010
P515501
=========
ND
ND
ND | TCDD
04-MAY-2010
P515501

ND
ND
ND | 04-MAY-2010
P515506
======
ND
ND
ND | TCDD
04-MAY-2010
P515506

ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD | ===
125
123
113
98
111 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100 | 04-MAY-2010
P515501
============
ND
ND
ND
ND
ND | TCDD
04-MAY-2010
P515501

ND
ND
ND
ND | 04-MAY-2010
P515506
======
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515506 ND ND ND ND ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD | ===
125
123
113
98
111
137 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100 | 04-MAY-2010
P515501
================================= | TCDD
04-MAY-2010
P515501

ND
ND
ND
ND
ND
ND | 04-MAY-2010
P515506
====== ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515506 ND ND ND ND ND ND ND ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD | ===
125
123
113
98
111
137
247 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100 | 04-MAY-2010
P515501
 | TCDD 04-MAY-2010 P515501 ND | 04-MAY-2010
P515506
====== ND
ND
ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD
octa CDD | ===
125
123
113
98
111
137
247
115 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010 | 04-MAY-2010
P515501
================================= | TCDD 04-MAY-2010 P515501 ND | 04-MAY-2010
P515506
====== ND
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF | ===
125
123
113
98
111
137
247
115
140 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001 | 04-MAY-2010
P515501
 | TCDD 04-MAY-2010 P515501 | 04-MAY-2010
P515506

ND
ND
ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.001
0.100
0.050 | 04-MAY-2010 P515501 P515501 ND | TCDD 04-MAY-2010 P515501 | 04-MAY-2010
P515506
=========
ND
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050 | 04-MAY-2010 P515501 P515501 ND | TCDD 04-MAY-2010 P515501 | 04-MAY-2010 P515506 ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100 | 04-MAY-2010 P515501 P515501 ND | TCDD 04-MAY-2010 P515501 | 04-MAY-2010 P515506 ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 04-MAY-2010 P515501 P515501 ND | TCDD 04-MAY-2010 P515501 | 04-MAY-2010 P515506 ND | TCDD 04-MAY-2010 P515506 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.001
0.001
0.050
0.050
0.100
0.100
0.100
0.100 | 04-MAY-2010 P515501 P515501 ND | TCDD 04-MAY-2010 P515501 | 04-MAY-2010 P515506 ND | TCDD 04-MAY-2010 P515506 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90
166 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 04-MAY-2010 P515501 P515501 ND | TCDD 04-MAY-2010 P515501 | 04-MAY-2010 P515506 ND | TCDD 04-MAY-2010 P515506 | Above are permit required CDD/CDF isomers. $\ensuremath{\mathsf{ND}}\xspace=$ not detected ### Annual 2010 | | | | | INFLUENT | INFLUENT
TCDD | EFFLUENT | EFFLUENT
TCDD | |--|---|---|--|--|--|---|--| | Analytes | | Units | Equiv. | 02-AUG-2010
P525067 | 02-AUG-2010
P525067 | 03-AUG-2010
P525072 | 03-AUG-2010
P525072 | | 2,3,7,8-tetra CDD | | PG/L | 1.000 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDD | | PG/L | 0.500 | ND
ND | ND | ND
ND | ND
ND | | 1,2,3,4,7,8_hexa_CDD | | PG/L | 0.100 | ND
ND | ND | ND
ND | ND
ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND
ND | ND | | 1,2,3,7,8,9-hexa CDD | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | | | 0.010 | ND | ND | ND
ND | ND | | octa CDD | | PG/L | 0.001 | ND ND | ND | ND | ND | | 2,3,7,8-tetra CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDF | | PG/L | 0.050 | ND | ND | ND | ND | | 2,3,4,7,8-penta CDF | | PG/L | 0.050 | ND | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND
ND | ND | | 1,2,3,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | | PG/L | 0.010 | ND | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | | | 0.010 | ND | ND | ND
ND | ND
ND | | octa CDF | | PG/L | 0.001 | ND | ND | ND | ND | | | | | | | | | | | | | | | INFLUENT | INFLUENT
TCDD
05-OCT-2010 | EFFLUENT | EFFLUENT
TCDD
05-OCT-2010 | | Analytes | MDL | Units | Equiv. | INFLUENT
05-OCT-2010
P533616 | | EFFLUENT
05-0CT-2010
P533621 | | | Analytes | | | Equiv.
= ===== | 05-0CT-2010
P533616 |
TCDD
05-OCT-2010
P533616 | 05-0CT-2010 | TCDD
05-0CT-2010
P533621 | | | === | | • | 05-0CT-2010
P533616 | TCDD
05-OCT-2010
P533616 | 05-0CT-2010
P533621 | TCDD
05-0CT-2010
P533621 | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD | ===
125
123 | PG/L
PG/L | 1.000
0.500 | 05-0CT-2010
P533616
 | TCDD
05-0CT-2010
P533616
ND
ND | 05-0CT-2010
P533621
ND
ND | TCDD
05-OCT-2010
P533621
======
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD | ===
125
123
113 | ======
PG/L
PG/L
PG/L | 1.000
0.500
0.100 | 05-0CT-2010
P533616
 | TCDD
05-OCT-2010
P533616

ND
ND
ND | 05-OCT-2010
P533621

ND
ND
ND | TCDD
05-OCT-2010
P533621

ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8_hexa_CDD | ===
125
123
113
98 | ======
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100 | 05-0CT-2010
P533616
 | TCDD
05-OCT-2010
P533616

ND
ND
ND
ND | 05-OCT-2010
P533621

ND
ND
ND
ND | TCDD
05-OCT-2010
P533621

ND
ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD | ===
125
123
113
98
111 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100 | 05-0CT-2010
P533616
 | TCDD
05-OCT-2010
P533616

ND
ND
ND
ND
ND
ND | 05-OCT-2010
P533621

ND
ND
ND
ND
ND
ND | TCDD
05-OCT-2010
P533621

ND
ND
ND
ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD | ===
125
123
113
98
111
137 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100 | 05-0CT-2010
P533616
 | TCDD
05-OCT-2010
P533616
 | 05-OCT-2010
P533621

ND
ND
ND
ND
ND
ND
ND | TCDD
05-OCT-2010
P533621

ND
ND
ND
ND
ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD
octa CDD | ===
125
123
113
98
111
137
247 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010 | 05-0CT-2010
P533616
================================== | TCDD
05-OCT-2010
P533616
 | 05-OCT-2010
P533621
========
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 05-OCT-2010 P533621 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF | ===
125
123
113
98
111
137
247
115 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001 | 05-0CT-2010
P533616
 | TCDD
05-OCT-2010
P533616
 | 05-OCT-2010
P533621
=========
ND
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 05-OCT-2010 P533621 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140 | =======
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001
0.100
0.050 | 05-0CT-2010
P533616
 | TCDD
05-OCT-2010
P533616
 | 05-0CT-2010
P533621
=========
ND
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 05-OCT-2010 P533621 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118 | =======
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001
0.100
0.050 | 05-0CT-2010 P533616 P533616 ND | TCDD
05-OCT-2010
P533616
 | 05-0CT-2010
P533621
 | TCDD 05-OCT-2010 P533621 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118
147 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001
0.050
0.050
0.100 | 05-0CT-2010 P533616 P533616 ND | TCDD 05-OCT-2010 P533616 ND | 05-0CT-2010 P533621 ND | TCDD 05-OCT-2010 P533621 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100 | 05-0CT-2010 P533616 P533616 ND | TCDD 05-OCT-2010 P533616 ND | 05-0CT-2010 P533621 ND | TCDD 05-OCT-2010 P533621 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152 | =======
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100 | 05-0CT-2010 P533616 P533616 ND | TCDD 05-OCT-2010 P533616 | 05-0CT-2010 P533621 ND | TCDD 05-OCT-2010 P533621 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148 | =======
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 05-OCT-2010 P533616 P533616 ND | TCDD 05-OCT-2010 P533616 | 05-0CT-2010 P533621 ND | TCDD 05-OCT-2010 P533621 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90 | =======
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.011
0.001
0.050
0.050
0.100
0.100
0.100
0.100 | 05-OCT-2010 P533616 P533616 ND | TCDD 05-OCT-2010 P533616 | 05-0CT-2010 P533621 ND | TCDD 05-OCT-2010 P533621 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90
166 | =======
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 05-OCT-2010 P533616 P533616 ND | TCDD 05-OCT-2010 P533616 | 05-0CT-2010 P533621 ND | TCDD 05-OCT-2010 P533621 | Above are permit required CDD/CDF isomers. $\ensuremath{\mathsf{ND=}}$ not detected #### Annual 2010 | | | | | COMB EFF | COMB EFF
TCDD | PRIMARY EFF | PRIMARY EFF
TCDD | |---|---|--|--|--|--|--|---| | | | | | 02-FEB-2010 | 02-FEB-2010 | 02-FEB-2010 | 02-FEB-2010 | | Analytes | | Units | Equiv. | P504517 | P504517 | P504522 | P504522 | | 2,3,7,8-tetra CDD | | PG/L | 1.000 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDD | 123 | PG/L | 0.500 | ND | ND | ND | ND | | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND |
ND | ND | ND | | octa CDD | 247 | PG/L | 0.001 | ND | ND | ND | ND | | 2,3,7,8-tetra CDF | 115 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | ND | ND | ND | | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.050 | ND | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | 148 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | 90 | PG/L | 0.010 | ND | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | 166 | PG/L | 0.010 | ND | ND | ND | ND | | octa CDF | 222 | PG/L | 0.001 | ND | ND | ND | ND | | | | | | | | | | | | | | | COMB EFF
04-MAY-2010 | COMB EFF
TCDD
04-MAY-2010 | PRIMARY EFF
04-MAY-2010 | PRIMARY EFF
TCDD
04-MAY-2010 | | Analytes | | Units | Equiv. | 04-MAY-2010
P515511 | TCDD
04-MAY-2010
P515511 | 04-MAY-2010
P515516 | TCDD
04-MAY-2010
P515516 | | | === | | | 04-MAY-2010 | TCDD
04-MAY-2010
P515511 | 04-MAY-2010
P515516 | TCDD
04-MAY-2010
P515516 | | • | ===
125 | | ===== | 04-MAY-2010
P515511 | TCDD
04-MAY-2010
P515511 | 04-MAY-2010
P515516 | TCDD
04-MAY-2010
P515516 | | 2,3,7,8-tetra CDD | ===
125
123 | PG/L | 1.000 | 04-MAY-2010
P515511
=============================== | TCDD
04-MAY-2010
P515511
 | 04-MAY-2010
P515516
====== | TCDD
04-MAY-2010
P515516
====== | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD | ===
125
123 | PG/L
PG/L | 1.000
0.500 | 04-MAY-2010
P515511
==========
ND
ND | TCDD
04-MAY-2010
P515511
ND
ND | 04-MAY-2010
P515516
ND
ND | TCDD
04-MAY-2010
P515516
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD | 125
123
113
98
111 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100 | 04-MAY-2010
P515511
 | TCDD
04-MAY-2010
P515511

ND
ND
ND | 04-MAY-2010
P515516

ND
ND
ND | TCDD
04-MAY-2010
P515516

ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD | 125
123
113
98
111 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100 | 04-MAY-2010
P515511
 | TCDD
04-MAY-2010
P515511

ND
ND
ND
ND
ND | 04-MAY-2010
P515516

ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515516 ND ND ND ND ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD | ===
125
123
113
98
111
137 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100 | 04-MAY-2010
P515511
 | TCDD
04-MAY-2010
P515511
 | 04-MAY-2010
P515516

ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515516 ND ND ND ND ND ND ND ND ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD | ===
125
123
113
98
111
137
247 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010 | 04-MAY-2010
P515511
=============================== | TCDD
04-MAY-2010
P515511
 | 04-MAY-2010
P515516

ND
ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515516 ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD
octa CDD | ===
125
123
113
98
111
137
247
115 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010 | 04-MAY-2010
P515511
=============================== | TCDD
04-MAY-2010
P515511
 | 04-MAY-2010
P515516

ND
ND
ND
ND
ND
ND
ND
ND | TCDD 04-MAY-2010 P515516 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF | ===
125
123
113
98
111
137
247
115
140 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001
0.100 | 04-MAY-2010
P515511
 | TCDD
04-MAY-2010
P515511
 | 04-MAY-2010
P515516
 | TCDD 04-MAY-2010 P515516 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118
147 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.001
0.050
0.050
0.100 | 04-MAY-2010 P515511 PD ND | TCDD 04-MAY-2010 P515511 | 04-MAY-2010 P515516 ND | TCDD 04-MAY-2010 P515516 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.001
0.050
0.050
0.100
0.100 | 04-MAY-2010 P515511 P515511 ND | TCDD 04-MAY-2010 P515511 | 04-MAY-2010 P515516 ND | TCDD 04-MAY-2010 P515516 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 04-MAY-2010 P515511 P515511 ND | TCDD 04-MAY-2010 P515511 | 04-MAY-2010 P515516 ND | TCDD 04-MAY-2010 P515516 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 04-MAY-2010 P515511 P515511 ND | TCDD 04-MAY-2010 P515511 | 04-MAY-2010 P515516 ND | TCDD 04-MAY-2010 P515516 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100
0.100 | 04-MAY-2010 P515511 P515511 ND | TCDD 04-MAY-2010 P515511 | 04-MAY-2010 P515516 P515516 ND | TCDD 04-MAY-2010 P515516 | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90
166 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 04-MAY-2010 P515511 P515511 ND | TCDD 04-MAY-2010 P515511 | 04-MAY-2010 P515516 ND | TCDD 04-MAY-2010 P515516 | Above are permit required CDD/CDF isomers. $\ensuremath{\mathsf{ND}}\xspace=$ not detected ### Annual 2010 | | | | | COMB EFF | COMB EFF
TCDD | PRIMARY EFF | PRIMARY EFF
TCDD | |--|--|--|---|---|--|---|--| | Analytes | | Units | Equiv. | 03-AUG-2010
P525077 | 03-AUG-2010
P525077 | 02-AUG-2010
P525082 | 02-AUG-2010
P525082 | | | | | | ======================================= | | | | | 2,3,7,8-tetra CDD | | PG/L | 1.000 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDD | | PG/L | 0.500 | ND | ND |
ND | ND | | 1,2,3,4,7,8_hexa_CDD | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDD | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | | | 0.010 | ND | ND | ND | ND | | octa CDD | | PG/L | 0.001 | ND | ND | ND | ND | | 2,3,7,8-tetra CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDF | | PG/L | 0.050 | ND | ND | ND | ND | | 2,3,4,7,8-penta CDF | | PG/L | 0.050 | ND | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | | PG/L | 0.010 | ND | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | | | 0.010 | ND | ND | ND | ND | | octa CDF | 222 | PG/L | 0.001 | ND | ND | ND | ND | | | | | | | | | | | | | | | COMB EFF | COMB EFF
TCDD | PRIMARY EFF | PRIMARY EFF
TCDD | | | | | | COMB EFF
05-OCT-2010 | | PRIMARY EFF
05-OCT-2010 | | | Analytes | | Units | Equiv. | 05-0CT-2010
P533626 | TCDD
05-0CT-2010
P533626 | 05-0CT-2010
P533631 | TCDD
05-0CT-2010
P533631 | | -====================================== | === | | = ===== | 05-0CT-2010
P533626 | TCDD
05-0CT-2010
P533626 | 05-0CT-2010
P533631 | TCDD
05-0CT-2010
P533631 | | 2,3,7,8-tetra CDD | ===
125 | PG/L | 1.000 | 05-0CT-2010
P533626
================================== | TCDD
05-0CT-2010
P533626
 | 05-0CT-2010
P533631
====== | TCDD
05-OCT-2010
P533631
====== | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD | ===
125
123 | PG/L
PG/L | 1.000
0.500 | 05-0CT-2010
P533626
============
ND
ND | TCDD
05-0CT-2010
P533626

ND
ND | 05-0CT-2010
P533631
ND
ND | TCDD
05-0CT-2010
P533631
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD | ===
125
123 | PG/L | 1.000 | 05-0CT-2010
P533626
================================== | TCDD
05-0CT-2010
P533626
 | 05-0CT-2010
P533631
====== | TCDD
05-OCT-2010
P533631
====== | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD | 125
123
113
98 | PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100 | 05-0CT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626

ND
ND
ND | 05-0CT-2010
P533631
ND
ND
ND | TCDD
05-OCT-2010
P533631

ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD | ===
125
123
113
98
111 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100 | 05-0CT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626

ND
ND
ND
ND | 05-OCT-2010
P533631

ND
ND
ND
ND
ND | TCDD
05-OCT-2010
P533631

ND
ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD | ===
125
123
113
98
111
137 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100 | 05-0CT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626

ND
ND
ND
ND
ND
ND | 05-OCT-2010
P533631

ND
ND
ND
ND
ND
ND | TCDD
05-OCT-2010
P533631

ND
ND
ND
ND
ND
ND | | 2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD
1,2,3,4,6,7,8-hepta CDD
octa CDD | ===
125
123
113
98
111
137
247 | PG/L
PG/L
PG/L
PG/L
PG/L
PG/L | 1.000
0.500
0.100
0.100
0.100
0.010 | 05-OCT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626
ND
ND
ND
ND
ND
ND
ND
ND | 05-OCT-2010
P533631
 | TCDD
05-OCT-2010
P533631

ND
ND
ND
ND
ND
ND
ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF | ===
125
123
113
98
111
137
247
115 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.001 | 05-OCT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626

ND
ND
ND
ND
ND
ND
ND
ND | 05-OCT-2010
P533631
 | TCDD
05-OCT-2010
P533631

ND
ND
ND
ND
ND
ND
ND
ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001
0.100 | 05-OCT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626

ND
ND
ND
ND
ND
ND
ND
ND | 05-OCT-2010
P533631
 | TCDD 05-OCT-2010 P533631 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,7,8-penta CDF 2,3,4,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
0.000 | 05-OCT-2010
P533626
================================== | TCDD
05-OCT-2010
P533626
 | 05-0CT-2010
P533631
=========
ND
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 05-0CT-2010 P533631 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118
147 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
0.050 | 05-0CT-2010
P533626
P533626
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | TCDD 05-OCT-2010 P533626 ND | 05-OCT-2010
P533631
================================== | TCDD 05-0CT-2010 P533631 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.100
0.010
0.001
0.050
0.050
0.100 | 05-0CT-2010 P533626 P533626 ND | TCDD 05-OCT-2010 P533626 ND | 05-OCT-2010 P533631 ND | TCDD 05-0CT-2010 P533631 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.010
0.050
0.050
0.100 | 05-0CT-2010 P533626 P533626 ND | TCDD 05-OCT-2010 P533626 ND | 05-0CT-2010 P533631 ND | TCDD 05-0CT-2010 P533631 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.010
0.050
0.050
0.100
0.100 | 05-0CT-2010 P533626 P533626 ND | TCDD 05-OCT-2010 P533626 ND | 05-0CT-2010 P533631 ND | TCDD 05-0CT-2010 P533631 ND | | 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF | ===
125
123
113
98
111
137
247
115
140
118
147
107
152
148
90 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L | 1.000
0.500
0.100
0.100
0.100
0.010
0.010
0.001
0.050
0.050
0.100
0.100
0.100 | 05-0CT-2010 P533626 P533626 ND | TCDD 05-OCT-2010 P533626 ND | 05-0CT-2010 P533631 ND | TCDD 05-0CT-2010 P533631 ND | Above are permit required CDD/CDF isomers. $\ensuremath{\mathsf{ND}}\xspace = \mathsf{not}$ detected ### Annual 2010 | | | | | SEC EFF
02-FEB-2010 | SEC EFF
TCDD
02-FEB-2010 | SEC EFF
04-MAY-2010 | SEC EFF
TCDD
04-MAY-2010 | |---|------------------|--------------|----------------|------------------------|--------------------------------|------------------------|--------------------------------| | Analytes | | Units | Equiv. | P504527 | P504527 | P515521 | P515521 | | ====================================== | | PG/L | 1.000 | ND | : ========
ND | : =========
ND | ND | | | | PG/L
PG/L | 0.500 | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD | | PG/L | 0.100 | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2,3,6,7,8-hexa_CDD | 98 | PG/L | 0.100 | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2,3,7,8,9-hexa CDD | |
PG/L | 0.100 | ND
ND | ND
ND | ND
ND | ND
ND | | 1,2,3,4,6,7,8-hepta CDD | | | 0.010 | ND
ND | ND
ND | ND
ND | ND
ND | | octa CDD | | PG/L | 0.001 | ND
ND | ND
ND | ND
ND | ND
ND | | 2,3,7,8-tetra CDF | | PG/L | 0.100 | ND | ND
ND | ND | ND
ND | | 1,2,3,7,8-penta CDF | | PG/L | 0.050 | ND | ND | ND
ND | ND
ND | | 2,3,4,7,8-penta CDF | | PG/L | 0.050 | ND | ND | ND | ND
ND | | 1,2,3,4,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND
ND | | 1,2,3,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | | PG/L | 0.010 | ND | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | | | 0.010 | ND | ND | ND | ND | | octa CDF | | PG/L | 0.001 | ND | ND | ND | ND | | | | | | SEC EFF | SEC EFF
TCDD | SEC EFF | SEC EFF
TCDD | | Analytos | WDI | Units | Equiv | 02-AUG-2010
P525087 | 02-AUG-2010
P525087 | 05-0CT-2010
P533636 | 05-0CT-2010
P533636 | | Analytes
========= | | ======= | Equiv. | | | | | | 2,3,7,8-tetra CDD | | PG/L | 1.000 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDD | 123 | PG/L | 0.500 | ND | ND | ND | ND | | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND | ND | ND | ND | | octa CDD | 247 | PG/L | 0.001 | ND | ND | ND | ND | | 2,3,7,8-tetra CDF | 115 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | ND | ND | ND | | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.050 | ND | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDF | | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | | | | | | | | | | 148 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | 148
90 | PG/L
PG/L | 0.100
0.010 | ND | ND | ND | ND | | | 148
90
166 | PG/L
PG/L | 0.100 | | | | | Above are permit required CDD/CDF isomers. $\ensuremath{\mathsf{ND}}\xspace=$ not detected